Preparation of CdIn2S4-CdS nanocomposite via a green route and using them in dot-sensitized solar cells for boosting efficiency

author

Abstract:

In this work In2S3 and CdS nanoparticles were prepared by a simple hydrothermal method and then annealed at 500 °C for 2 h in an Ar gas until CdIn2S4(CdIS)-CdS nanocomposites were formed. Afterwards, efficiency of the as-synthesized CdIS-CdS nanocomposite in quantum dot-sensitized solar cells (QDSSCs) was evaluated. For this purpose, the as-prepared CdIS-CdS nanocomposites were deposited on TiO2 by doctor’s blade technique and electrophoresis deposition was used for fabrication of TiO2 layer on the FTO glass substrate. Using CdIS-CdS nanocomposite led to obtaining 1.71% cell efficiency that in comparison with pure CdS (0.97%) and CdIn2S4 nanoparticles (95%), efficiency improvements of 76% and 80% were respectively achieved.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Modeling high-efficiency quantum dot sensitized solar cells.

With energy conversion efficiencies in continuous growth, quantum dot sensitized solar cells (QDSCs) are currently under an increasing interest, but there is an absence of a complete model for these devices. Here, we compile the latest developments in this kind of cells in order to attain high efficiency QDSCs, modeling the performance. CdSe QDs have been grown directly on a TiO(2) surface by s...

full text

Quantum Dot Sensitized Solar Cells

In response to rapidly increasing global energy demand, the development of alternative energy sources to fossil fuels has emerged as one of the most urgent technological challenges. Solar energy, which represents a nearly unlimited source of clean power, has been considered as one of the most promising new energy sources. In addition to the current success of silicon based solar cells, quantum ...

full text

Au nanoparticle electrocatalysis in a photoelectrochemical solar cell using CdS quantum dot-sensitized TiO2 photoelectrodes.

A significant Au particle size-dependent electrocatalytic effect has been shown in a sandwich type photoelectrochemical solar cell consisting of CdS quantum dot (QD)-sensitized TiO(2) photoelectrodes, Au nanoparticle (NP)-loaded SnO(2) counter electrodes, and a polysulfide electrolyte solution intervening between the electrodes.

full text

ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.

Photoelectrode made of nanocable structure of ZnO nanorods (NR) coated with TiO(2) nanosheets (NSs) was investigated for CdS/CdSe quantum dot co-sensitized solar cells. ZnO NRs prepared solution reaction at 60 °C served as the backbone for direct electron transport in view of the single crystallinity of the ZnO NRs and the high electron mobility of ZnO semiconductor. Anatase TiO(2) NSs with the...

full text

Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO2 Based CdS Quantum Dot Sensitized Solar Cells

Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measureme...

full text

Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells.

We have fabricated highly efficient CdS/CdSe quantum dot-sensitized solar cells (QDSSCs) featuring low-cost cobalt sulfide (CoS) counter electrodes. Under 100 mW cm(-2) irradiation, the CdS/CdSe QDSSC featuring a CoS electrode provided an energy conversion efficiency as high as 3.4%.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  133- 142

publication date 2018-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023