نتایج جستجو برای: QDSSCs
تعداد نتایج: 47 فیلتر نتایج به سال:
To boost the photoconversion efficiency (PCE) of ever promising quantum dot sensitized solar cells (QDSSCs), and to improve the design of photoanodes, the ability of the counter electrode (CE) to effectively reduce the oxidized electrolyte needs special attention. A composite of a 15 wt% graphene oxide nanoribbon (GOR), obtained by unzipping multi-walled carbon nanotubes (MWCNTs), and CuxS inte...
Different counter electrode (CE) materials based on carbon and Cu2S were prepared for the application in CdS and CdSe quantum dot-sensitized solar cells (QDSSCs). The CEs were prepared using low-cost and facile methods. Platinum was used as the reference CE material to compare the performances of the other materials. While carbon-based materials produced the best solar cell performance in CdS Q...
The emergence of quantum dot-sensitized solar cells (QDSSCs) has provided an alternative way to harvest sunlight for energy conversion. Among all the QDSSCs, cadmium chalcogenide (CdX, X1⁄4S, Se or Te) based QDSSCs have gained a significant interest due to their easy fabrication, low cost and high performance. However, their performance still does not match with that of their dye-sensitized sol...
In this paper, to improve the power conversion efficiencies (PCEs) of quantum dot-sensitized solar cells (QDSSCs) based on CdS-sensitized TiO2 nanotube (TNT) electrodes, two methods are employed on the basis of our previous work. First, by replacing the traditional single-sided working electrodes, double-sided transparent TNT/ITO (DTTO) electrodes are prepared to increase the loading amount of ...
Among the issues that restrict the power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSSCs), insufficient catalytic activity and stability of counter electrodes (CEs) are critical but challenging ones. The state-of-the-art Cu/Cu2S CEs still suffer from mechanical instability and uncertainty due to the reaction of copper and electrolyte. Herein, ITO@Cu2S core-shell nanowi...
Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measureme...
Currently, TiO2 on a fluorine-doped tin oxide substrate is the most commonly used type of photoelectrode in high-efficiency quantum dot-sensitized solar cells (QDSSCs). The power conversion efficiency (PCE) of TiO2 photoelectrodes is limited because of higher charge recombination and lower QD loading on the TiO2 film. This article describes the effect of a TiO2 compact layer on a TiO2 film to e...
The past few years have been great for semiconductor quantum dot-sensitized solar cells (QDSSCs). For the first time, efficiency exceeding 15% has reported. This narrowed gap with other emerging cell technologies such as dye-sensitized and thin film cells. In this miniperspective, reason improvement is briefly reviewed. Few advancements identified that are responsible performance breakthrough i...
The research work aimed to explore a serial of facile methods obtain low-cost, flexible, and high-performance CdS/CdSe QDSSCs. flexible photoanode was prepared on the ITO/PEN substrate by blade coating. In order improve bonding performance between different layers photovoltaic devices, introduction additives in precursor slurry rapid annealing after coating were adopted. QDSSCs deliver energy c...
Quantum dot sensitized solar cells (QDSSCs) are attractive photovoltaic devices due to their simplicity and low material requirements. However, efforts to realize high efficiencies in QDSSCs have often been offset by complicated processes and expensive or toxic materials, significantly limiting their useful application. In this work, we have realized for the first time, high performance PbS QDS...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید