Numerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles

Authors

  • A. Abouei Mehrizi Biomedical Engineering Division, Life Science Engineering Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, I.R. Iran
  • A. Lashkaripour Biomedical Engineering Division, Life Science Engineering Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, I.R. Iran
  • M.R. Rasouli Biomedical Engineering Division, Life Science Engineering Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, I.R. Iran
Abstract:

Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, which enables miniaturization of Lab-On-Chip devices.  This study investigates two different designs of a passive T-shaped micromixer employing several rectangular obstacles and grooves to monitor mixing efficiency with geometry change, while keeping the Reynolds number under 2. The mixing performance of these geometries is studied by numerical study and it was implemented in COMSOL Multiphysics environment. It was clarified that T-shaped micromixer with obstacles and grooved micromixer improved mixing efficiency of the basic design by 37.2% and 43.8%, respectively. Also, it was shown that this increase in mixing efficiency was due to the development of transversal component of flow caused by the obstacles and grooves.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

numerical study on low reynolds mixing oft-shaped micro-mixers with obstacles

micromixers are one of the most crucial components of lab-on-a-chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. the challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...

full text

Aerodynamic loads on cactus-shaped cylinders at low Reynolds numbers

Direct numerical simulations of flow past cactus-shaped cylinders are performed at Reynolds numbers of 20, 100, and 300. The results are contrasted to those from smooth cylinders at the same Reynolds numbers. The cavities in the cactus-shaped cylinders are seen to reduce the forces acting on them. At Reynolds number of 20, the drag is reduced by 22% due to reduction in the viscous forces. At Re...

full text

Investigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers

Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...

full text

Investigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers

Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...

full text

Solid-Solid Mixing with Static Mixers

Static mixers are in-line devices, which consist of motionless mixing elements, inserted in the given length of the pipe. Homogenization is attained by using the flow energy of the material to be mixed. The mixing effect depends on the continuous separation, distribution, and reunion of particles in the stream of material. There are various element designs available for mixing liquids and they ...

full text

Fluid mixing in a T-shaped micro-mixer

In relation to the time-scale of chemical kinetics, diffusive transport in micro-devices is faster than in conventional mixers. To exploit the resulting potential for chemical process engineering, size effects evident in the transport processes have to be understood. For this purpose, the scaling behaviour concerning the transport of mass, momentum and heat are considered. Just as much, the mix...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  68- 76

publication date 2015-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023