Numerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles
Authors
Abstract:
Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, which enables miniaturization of Lab-On-Chip devices. This study investigates two different designs of a passive T-shaped micromixer employing several rectangular obstacles and grooves to monitor mixing efficiency with geometry change, while keeping the Reynolds number under 2. The mixing performance of these geometries is studied by numerical study and it was implemented in COMSOL Multiphysics environment. It was clarified that T-shaped micromixer with obstacles and grooved micromixer improved mixing efficiency of the basic design by 37.2% and 43.8%, respectively. Also, it was shown that this increase in mixing efficiency was due to the development of transversal component of flow caused by the obstacles and grooves.
similar resources
numerical study on low reynolds mixing oft-shaped micro-mixers with obstacles
micromixers are one of the most crucial components of lab-on-a-chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. the challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...
full textAerodynamic loads on cactus-shaped cylinders at low Reynolds numbers
Direct numerical simulations of flow past cactus-shaped cylinders are performed at Reynolds numbers of 20, 100, and 300. The results are contrasted to those from smooth cylinders at the same Reynolds numbers. The cavities in the cactus-shaped cylinders are seen to reduce the forces acting on them. At Reynolds number of 20, the drag is reduced by 22% due to reduction in the viscous forces. At Re...
full textInvestigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers
Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...
full textInvestigating Fluid Mixing in Electro-Osmotic Flow Through Passive Micro-Mixers Having Square and Triangle Barriers
Objective: In this article, a numerical study is conducted on mixing of two fluids in the liquid phase with two different concentrations of a chemical species in the electro-osmotic flow. Methods: The base liquid is an electrolyte which flows in a two-dimensional micro-channel having electrically charged walls. Lorentz electric force, which is used as stimulating flow factor, is created by appl...
full textSolid-Solid Mixing with Static Mixers
Static mixers are in-line devices, which consist of motionless mixing elements, inserted in the given length of the pipe. Homogenization is attained by using the flow energy of the material to be mixed. The mixing effect depends on the continuous separation, distribution, and reunion of particles in the stream of material. There are various element designs available for mixing liquids and they ...
full textFluid mixing in a T-shaped micro-mixer
In relation to the time-scale of chemical kinetics, diffusive transport in micro-devices is faster than in conventional mixers. To exploit the resulting potential for chemical process engineering, size effects evident in the transport processes have to be understood. For this purpose, the scaling behaviour concerning the transport of mass, momentum and heat are considered. Just as much, the mix...
full textMy Resources
Journal title
volume 3 issue 2
pages 68- 76
publication date 2015-06-30
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023