Non-oxidative conversion of methane to aromatics over modified zeolite catalysts by transitional metals

Authors

  • Ali Naghizadeh Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
  • Aligholi Niaei Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
  • Elmira Yaghinirad Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
  • Hassan Aghdasinia Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
Abstract:

The activity of different transitional metals over modified H-ZSM-5 catalysts for methane conversion to aromatics was compared. The first group of catalysts was Mo-impregnated H-ZSM-5 zeolites with 1, 3 and 6 wt% of Mo. The second group was M(3 wt%)- impregnated H-ZSM-5 (M: Ag, Cd, Cr, Mo, Zn and Mn). The catalytic activity of the first group was investigated at 600, 700 and 800 °C and gas hourly space velocity (GHSV) of 1500, 2250, 3600 [ml.g-1.h-1]. Likewise, the second group of catalysts was examined at 700°C and GHSV of 2250 [ml.g-1.h-1]. The catalyst samples were appropriately characterized by XRD, BET and SEM techniques. The effect of loaded transitional metals on the methane conversion was sorted on the basis of benzene yield as following: 3%wt Mo> 3%wt Zn> 3%wt Mn> 3%wt Ag> 3%wt Cd > 3%wt Cr. The highest methane conversion was 11.13% obtained over the Mo(3 wt%)-impregnated HZSM-5 catalyst.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hydrodeoxygenation of m-cresol over gallium-modified beta zeolite catalysts

Ga-modified H-Beta (Ga/HBEA) zeolites were evaluated and compared to other Ga-containing catalysts supported on SiO2 and ZSM-5 (MFI) for the hydrodeoxygenation of m-cresol, a model compound representative of lignin-derived phenolics. The products include toluene, benzene, xylene, light hydrocarbons, as well as phenol and other oxygenated compounds. The appearance of bicyclic compounds suggests ...

full text

Oxidative coupling of methane over doped Li/MgO catalysts

A series of zirconia doped Li/MgO catalysts with a fixed amount of zirconia and varying concentrations of lithium was used for the oxidative coupling of methane. It was found that an increase in lithium concentration resulted in a decrease in initial activity, while the selectivity was not affected. The life-time of Zr doped Li/MgO catalysts with a fixed concentration of ZrOz is a function of t...

full text

Oxidative coupling of methane with microwave and RF plasma catalytic reaction over transitional metals loaded on ZSM-5

In the microwave and radio frequency (RF) plasma catalytic reaction at room temperature, the oxidative coupling of methane (OCM) over transitional metals loaded on ZSM-5 has been carried out. The transitional metals, Fe, Ni, Co and Cu (1B family element), loaded on ZSM-5 have been tested for the OCM using the plasma catalytic reaction. In this work, the conversion of methane to C2 products has ...

full text

Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluorope...

full text

Catalytic and Non-catalytic Conversion of Methane to C2 Hydrocarbons in a Low Temperature Plasma

The direct conversion of methane to C2 hydrocarbons, in a quartz tube reactor enforced by a DC corona discharge, was investigated at atmospheric pressure. The process was carried out in the presence of metal oxide catalysts of Mn/W/SiO2, Mn/W/SiO2 (tetraethyl orthosilicate, TEOS), and Mn/W/CNT (supported on carbon nanotubes). The total yield to C2 hydrocarbons in the presence of metal oxide cat...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 2

pages  147- 154

publication date 2019-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023