Non-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel
Authors
Abstract:
The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the dynamics of flow will depend on the thermostat chosen. To obtain a more uniform temperature distribution across the channel we use local thermostating near the wall. The obtained results show that velocity profile, slip length and slip velocity depends on the driving force.
similar resources
effect of sub-grid scales on large eddy simulation of particle deposition in a turbulent channel flow
چکیده ندارد.
15 صفحه اولPoiseuille flow of molecular fluids
We examine a generalised Navier-Stokes theory applicable to fluids composed of non-spherical molecules. We compare the theoretical predictions for flow velocity and viscosity with results obtained from nonequilibrium molecular dynamics (NEMD) simulations of a fluid undergoing gravity fed flow down a rectangular channel. We study two different fluids: one composed of spherical particles and the ...
full textStudy Effect of Deformation Nanochannel Wall Roughness on The Water-Copper Nano-Fluids Poiseuille Flow Behavior
In the nanochannel flow behavior with respect to expand their applications in modern systems is of utmost importance. According to the results obtained in this study, the condition of nonslip on the wall of the nanochannel is not acceptable because in the nano dimensions, slip depends on different parameters including surface roughness. In this study, keeping the side area roughness, deformatio...
full textInvestigation of Melting by Molecular Dynamics Simulation
The melting of a 64 ion microcrystal of KCI was studied by means of a molecular dynamics computer simulation. We used a central pair interaction with an inverse power law repulsion. The thermodynamics, kinetic and structural properties such as melting temperature, latent heat, mean square displacement, diffusion constant, radial distribution function and bond angle distribution are calculated. ...
full textPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
full textMolecular Dynamics Simulation of the Melting Process in Au15Ag40 Nanoalloys
In this study the operations of melting of Au15Ag40 nanoalloy have been studied using the molecular dynamic simulations through the Gupta multiparticle potential and the nonergodicity of simulations is eliminated by the multiple histogram method. The melting characteristics are determined by the analysis of variations in the potential energy. The calculations indicate that the melting of Au15Ag...
full textMy Resources
Journal title
volume 11 issue 1
pages 21- 33
publication date 2010-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023