Ni2As2O7 pyrochlore nanomaterial: Solid state synthesis, crystal structure determination, crystal phase growth study and physical properties
author
Abstract:
Nanostructured Ni2As2O7 semiconductor samples were synthesized by a solid state method among As2O3 and Ni(NO3)2.6H2O raw materials at 650 °C (S1) and 750 °C (S2) as reaction temperatures. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique and Fourier-transform infrared (FTIR) spectroscopy. The Rietveld analysis showed that the obtained materials were crystallized well in the triclinic crystal structure with the space group P1. The data of Rietveld analysis showed that the purity of the synthesized nanomaterials was increased by increasing the reaction temperature. The morphologies of the synthesized materials were studied by field emission scanning electron microscope (FESEM). It was found that the morphology of the obtained materials was changed from homogeneous sponge to particles and somewhat porous structure, by increasing the reaction temperature. Besides, the average particle sizes were increased considerably by increasing the reaction temperature. Ultraviolet-visible spectra analysis showed that the synthesized Ni2As2O7 nanomaterials had strong light absorption in the ultraviolet light region. The direct optical band gap energies were 3.20, 3.90, 4.80 eV and 2.9, 3.40, 4.70 eV for S1 and S2, respectively. The data showed that the band gaps were decreased by increasing the reaction temperature that can be due to the increasing the crystallite sizes of the targets.
similar resources
Single crystal growth, structure and magnetic properties of Pr2Hf2O7 pyrochlore.
Large single crystals of pyrochlore [Formula: see text] were successfully grown by the floating zone technique using an optical furnace equipped with high power xenon arc lamps. Structural investigations were carried out via powder synchrotron x-ray and neutron diffraction to establish the crystallographic structure of the materials produced. The magnetic properties of the single crystals were ...
full textSolid–Solid Synthesis, Crystal Structure and Thermal Decomposition of Copper(II) Complex of 2-Picolinic Acid
The copper(II) complex [Cu(pic)2]·2H2O was synthesized with 2-picolinic acid (Hpic) and copper acetate as reactants by room temperature solid-solid reaction. The composition and structure of the complex was characterized by elemental analyses, single crystal X-ray diffraction, X-ray powder diffraction, FT-IR spectroscopy and thermogravimetry-differential scanning calor...
full textSynthesis, Crystal Structure, and Physical Properties of the Perovskite Iridates
Perovskite iridates have emerged as a new paradigm for studying the strongly correlated electron physics with strong spin-orbit coupling. The “113” alkaline-earth iridates AIrO3 (A = Ca, Sr, Ba) display a rich variety of crystallographic and electronic states and are now attracting growing research interest. This chapter aims to provide an overview for these “113” iridates, including the materi...
full textCrystal growth, structure and physical properties of crystals
Vesuvianite is an ortho-diorthosilicate of a general schematic formula X~19Y13Z18O68W10, where X – Ca and other cations, which occupy sites of coordination number 8, Y – cations occupying octahedrons and pentagonal polyhedrons: Al, Fe, Mg, Ti, etc., Z – Si in tetrahedrons, W – univalent and bivalent anions. Structures of vesuvianites are studied in dependence on a character of cation ordering i...
full textdetermination of some physical and mechanical properties red bean
چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...
15 صفحه اولMy Resources
Journal title
volume 9 issue 2
pages 170- 178
publication date 2018-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023