Nanobiosensors and fluorescence based biosensors: An overview
Authors
Abstract:
A biosensor can sense biological elements after interaction with the recognition element. The signal produced due to interaction of the analyte with its biochemical element is transduced by a transducer and detected by appropriate modes. The miniaturization of these biosensors at the nano level using nanostructures as a platform for sensing the analyte or its detection is called a nanobiosensor. Several biological elements can be detected like nucleic acids, enzymes, antibodies, microorganisms, toxins, cells etc. with high specificity. This mini review focuses on the different types of nanobiosensors based on the type of analyte and the type of transducer used for detection. The different types of fluorescence based design of biosensors are also discussed along with the metal enhanced fluorescence based nanobiosensors. The application of biosensors towards the diagnosis of various diseases, targeted drug delivery and imaging is also discussed.
similar resources
Electrochemical biosensors and nanobiosensors
Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an appro...
full textConducting Polymer Based Nanobiosensors
In recent years, conducting polymer (CP) nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nano...
full textFiber-optic biosensors based on fluorescence energy transfer.
A new optical homogeneous biochemical method for the assay of glucose has been developed, based on fluorescence energy transfer between a glucose analog, dextran labeled with fluorescein isothiocyanate (FITC-dextran), and a glucose-receptor protein, Rhodamine-labeled Concanavalin A (Rh-ConA). When FITC-dextran binds to Rh-ConA in solution, and is light-activated, the FITC label transfers its ab...
full textGenetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
The phenomenon of Förster (or fluorescence) resonance energy transfer (FRET) between two fluorescent proteins of different hues provides a robust foundation for the design and construction of biosensors for the detection of intracellular events. Accordingly, FRET-based biosensors for a variety of biologically relevant ions, molecules, and specific enzymatic activities, have now been developed a...
full textGlucose Biosensors: An Overview of Use in Clinical Practice
Blood glucose monitoring has been established as a valuable tool in the management of diabetes. Since maintaining normal blood glucose levels is recommended, a series of suitable glucose biosensors have been developed. During the last 50 years, glucose biosensor technology including point-of-care devices, continuous glucose monitoring systems and noninvasive glucose monitoring systems has been ...
full textMy Resources
Journal title
volume 10 issue 1
pages 1- 17
publication date 2019-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023