Increased Acetate Ester Production of Polyploid Industrial Brewer’s Yeast Strains via Precise and Seamless “Self-cloning” Integration Strategy
Authors
Abstract:
Background: Enhancing the industrial yeast strains ethyl acetate yield through a precise and seamless genetic manipulation strategy without any extraneous DNA sequences is an essential requisite and significant demand. Objectives: For increasing the ethyl acetate yield of industrial brewer’s yeast strain, all the ATF1 alleles were overexpressed through “self-cloning” integration strategy. Material and Methods: Escherichia coli strain DH5α was utilized for plasmid construction. ATF1 alleles were overexpressed through a precise and seamless insertion of the PGK1 promoter in industrial brewer’s yeast strain S6. In addition, growth rates, ATF1 mRNA levels, AATase activity, the fermentation performance of the engineered strains, and gas chromatography (GC) analysis was conducted. Results: The two engineered strains (S6-P-12 and S6-P-30) overexpressed all ATF1 alleles but unaffected normal growth. The ATF1 mRNA levels of the S6-P-12 and S6-P-30 were all 4-fold higher than that of S6. The AATase (Alcohol acetyl transferases, encoded by ATF1 gene) activity of the two engineered strains was all 3-fold higher than that of the parent strain. In the beer fermentation at 10 ℃, the concentrations of ethyl acetate produced by the engineered strains S6-P-12 and S6-P-30 was increased to 23.98 and 24.00 mg L-1, respectively, about 20.44% and 20.54% higher than that of S6. Conclusions: These results verify that the ethyl acetate yield could be enhanced by the overexpressed of ATF1 in the polyploid industrial brewer’s yeast strains via “self-cloning” integration strategy. The present study provides a reference for target gene modification in the diploid or polyploid industrial yeast strains.
similar resources
Construction of self-cloning industrial brewing yeast with high-glutathione and low-diacetyl production
Self-cloning strains of industrial brewing yeast were constructed, in which one allele of a-acetohydroxyacid synthase (AHAS) gene (ILV2) was disrupted by integrating Saccharomyces cerevisiae genes, c-glutamylcysteine synthetase gene (GSH1) and copper resistant gene (CUP1) into the locus of ILV2. The self-cloning strains were selected for their resistance to CuSO4 and identified by PCR amplifica...
full textstudy the effects of low level laser diode on no production and healing of diabetic and cortisone acetate and normal wounded sd rats
nitric oxide (no) is a small molecule synthesized by most of mammalian cells with diverse biological activities including vasodilatation, host defense and wound healing. impaired wound healing is a common occurrence among diabetics and patients receiving glucocorticoid therapy. on the other hand the application of laser in biomedical area have been increased. thus, the current studies were desi...
15 صفحه اولperformance of biological system and advanced oxidation processes (aop) treating antibiotic production industrial wastewater
در این مطالعه، عملکرد دو سیستم اکسیداسیون شیمیایی پیشرفته و یک سیستم بیولوژیکی برای حذف آموکسی سیلین در فاضلاب های سنتزیدر غلظت های مشابه با موارد صنعتی مورد بررسی قرار گرفته شدند. مطالعه انجام شده دارای سه بخش متفاوت اکسیداسیون با ازن و اشعه uv، اکسیداسیون با استفاده از نانو فتوکاتالیست tio2 و استفاده از بیوراکتور هوازی لجن فعال با جداکننده های فیزیکی می باشد. در هر بخش، متغیر های متفاوتی متنا...
15 صفحه اولCholine Kinase from Brewers’ Yeast
Choline kinase was purified approximately 300-fold, in 5% yield, from an autolysate of dried brewers’ yeast. A molecular weight of 67,000 was estimated using a Stokes radius of 33 A, as determined by Sephadex G-200 chromatography. An s~,,,~ of 4.8 S was obtained by sucrose density gradient centrifugation. Enzyme activity was diminished by sulfhydryl inhibitors and stabilized by the presence of ...
full textAcetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.
Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene...
full textPseudoporphyria associated with consumption of brewers' yeast.
A case of pseudoporphyria associated with excessive consumption of brewers ' yeast was studied. Detailed analysis of the yeast tablets by high performance liquid chromatography showed the presence of dicarboxylic deuteroporphyrin , mesoporphyrin, and protoporphyrin; coproporphyrin I and III isomers; and uroporphyrin I and III isomers. The faecal porphyrin concentration of the patient taking yea...
full textMy Resources
Journal title
volume 17 issue 2
pages 38- 45
publication date 2019-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023