Celecoxib, indomethacin and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways
Authors
Abstract:
Objective(s): The possible action of nonsteroidal anti-inflammatory drugs (NSAIDs) in the reduction of reactive oxygen species (ROS) and also as anti-apoptotic agents may suggest them as putative agents for the treatment of neurodegenerative diseases. This study was designed to explore some pathways alterations induced by NSAIDs following 6-hydroxydopamine (6-OHDA)-induced cell death in PC12 cells as an in vitro model of Parkinson's disease (PD) and to compare the effects of celecoxib, indomethacin and ibuprofen.Materials and Methods: The cell viability, ROS content, glutathione (GSH) level, and apoptosis were measured using resazurin, dichlorofluorescein diacetate (DCFH-DA), 5,5′-dithiobis-2-nitrobenzoic acid (DTNB), propidium iodide (PI) and flowcytometry, real-time PCR and western blot.Results: Based on the results, pretreatment with celecoxib, indomethacin and ibuprofen for 24 hr significantly induced concentration and time-dependent protection against 6-OHDA-induced PC12 cell death. Cell viability (P<0.001), GSH level (P<0.01) and cytoplasmic content of nuclear factor kappa B (NFκB) (P<0.01) were increased, also ROS content (P<0.001) and apoptosis biomarkers such as the cleaved caspase-3 (P<0.001), Bax (P<0.01), phospho- stress-activated protein kinases / c-Jun N-terminal kinases (P-SPAK/JNK) (P<0.01) and cleaved poly ADP ribose polymerase (PARP) (P<0.001) protein levels were all decreased after pretreatment of cells with NSAIDs in 6-OHDA-induced PC12 cells. Conclusion: It is suggested that NFκB and SAPK/JNK pathways have an important role in 6-OHDA-induced cell injury. Overall, it seems that pretreatment with NSAIDs protect dopaminergic cells and may have the potential to slow the progression of PD.
similar resources
Inhibition by Anandamide of 6-Hydroxydopamine-Induced Cell Death in PC12 Cells
6-hydroxydopamine (6-OHDA) is a selective neurotoxin that is widely used to investigate cell death and protective strategies in models of Parkinson's disease. Here, we investigated the effects of the endogenous cannabinoid, anandamide, on 6-OHDA-induced toxicity in rat adrenal phaeochromocytoma PC12 cells. Morphological analysis and caspase-3 activity assay revealed that anandamide inhibited 6-...
full textNeuroprotective effect of topiramate against 6-hydroxydopamine-induced cell death in Parkinson's disease cell mode
Introduction: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive neuronal dysfunction. Growing evidence has shown that oxidative stress plays a crucial role in the pathogenesis of Parkinson's disease. Correspondingly, the current study evaluated the protective effect of topiramate in 6-hydroxydopamine induced oxidative stress and apoptosis in PC12 cells...
full textLuteolin Modulates 6-Hydroxydopamine-Induced Transcriptional Changes of Stress Response Pathways in PC12 Cells
The neurotoxin 6-hydroxydopamine (6-OHDA), which causes transcriptional changes associated with oxidative and proteotoxic stress, has been widely used to generate an experimental model of Parkinson's disease. The food-derived compound luteolin has multi-target actions including antioxidant, anti-inflammatory and neurotrophic activities. The aim of this study is to investigate how luteolin affec...
full textthe effect of vocabulary instruction through semantic mapping on learning and recall of efl learners
چکیده ندارد.
15 صفحه اولThe mechanism of neuroprotective effect of Viola odorata against serum/glucose deprivation-induced PC12 cell death
Objective: Oxidative stress is associated with the pathogenesis of brain ischemia and other neurodegenerative disorders. Previous researches have shown the antioxidant activity of Viola odorata L. In this project, we studied neuro-protective and reactive oxygen species (ROS) scavenging activities of methanol (MeOH) extract and other fractions isolated from <e...
full textNAMPT protects against 6-hydroxydopamine-induced neurotoxicity in PC12 cells through modulating SIRT1 activity.
Parkinson's disease (PD) is the second most common progressive neurodegenerative movement disorder. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate‑limiting step in the nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in mammals, is a substrate for NAD+‑dependent enzymes, such as sirtuin 1 (SIRT1), and contributes to cell fate decisions. However, the role of...
full textMy Resources
Journal title
volume 22 issue 5
pages 477- 484
publication date 2019-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023