A Multiple Adaptive Neuro-Fuzzy Inference System for Predicting ERP Implementation Success

Authors

  • Iman Raeesi Vanani Faculty of Management and Accounting, Allameh Tabataba'i University, Tehran, Iran
Abstract:

The implementation of modern ERP solutions has introduced tremendous opportunities as well as challenges into the realm of intensely competent businesses. The ERP implementation phase is a very costly and time-consuming process. The failure of the implementation may result in the entire business to fail or to become incompetent. This fact along with the complexity of data streams has led the researchers to develop a hierarchical multi-level predictive solution to automatically predict the implementation success of ERP solution. This study exploits the strength and precision of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for predicting the implementation success of ERP solutions before the initiation of the implementation phase. This capability is obtained by training the ANFIS system with a data set containing a large number of ERP implementation efforts that have led to success, failure, or a mid-range implementation. In the initial section of the paper, a brief review of the recent ERP solutions as well as ANFIS architecture and validation procedure is provided. After that, the major factors of ERP implementation success are deeply studied and extracted from the previous literature. The major influential implementation factors in the businesses are titled as Change Orchestration (CO), Implementation Guide (IG), and Requirements Coverage (RC). The factors represent the major elements that guide the implementation project to a final success or to a possible failure if mismanaged. Accordingly, three initial ANFIS models are designed, trained, and validated for the factors. The models are developed by gathering data from 414 SMEs located in the Islamic Republic of Iran during a three-year period. Each model is capable of identifying the weaknesses and predicting the successful implementation of major factors. After this step, a final ANFIS model is developed that integrates the outputs of three initial ANFIS models into a final fuzzy inference system, which predicts the overall success of the ERP implementation project before the initiation phase. This model provides the opportunity of embedding the previous precious experiences into a unified system that can reduce the heavy burden of implementation failure.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

designing a fuzzy inference system for predicting the implementation success of erp solution

implementation of enterprise resource planning has had a chaotic history in which many projects ended successfully and many failed or ended without approaching the predetermined objectives. this research, in terms of purpose, is considered fundamental since it designs a new system for solving a fundamental problem and it is also an applied research because the research result is deployed in the...

full text

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS

The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Ada...

full text

Implementation of Adaptive Neuro-Fuzzy Inference System (Anfis) for Performance Prediction of Fuel Cell Parameters

Fuel cells are potential candidates for storing energy in many applications; however, their implementation is limited due to poor efficiency and high initial and operating costs. The purpose of this research is to find the most influential fuel cell parameters by applying the adaptive neuro-fuzzy inference system (ANFIS). The ANFIS method is implemented to select highly influential parame...

full text

Predicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System

Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...

full text

Predicting ERP User Satisfaction―an Adaptive Neuro Fuzzy Inference System (ANFIS) Approach

ERP projects’ failing to meet user expectations is a serious problem. This research develops an Adaptive Neuro Fuzzy Inference System (ANFIS) model, to predict the key ERP outcome “User Satisfaction” using causal factors present during an implementation as predictors. Data for training and testing the models was from a cross section of firms that had implemented ERPs. ANFIS is compared with oth...

full text

Predicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System

Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 4

pages  587- 621

publication date 2020-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023