بررسی احاطه محدود شده در گراف ها
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه
- نویسنده رعنا شعبانی دهخوارقانی
- استاد راهنما رعنا خوئیلر سید محمود شیخ الاسلامی
- سال انتشار 1393
چکیده
فرض کنید g یک گراف باشد. عدد اخاطه ای k - محدود شده گراف g کوچکترین عدد صحیح r ( g ) است , بطوریکه برای هر زیر مجموعه u با k راس یک مجموعه احاطه گر در g از اندازه ی حداکثر r ( g ) شامل u موجود باشد. بنابراین عدد احاطه ای k- محدود شده یک گراف تعداد رئوس مورد نیاز برای احاطه گری است با این شرط که مجموعه احاطه گر شامل k راس دلخواه باشد.
منابع مشابه
اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملنتایجی برای عدد احاطه گر ماکسیمال ۲-رنگین کمانی در گراف ها
تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده میشود هرگاه برای هر راس با شرط داشته باشیم . وزن یک 2rdf برابر است با . عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش میدهیم کمترین وزن یک 2rdf در گراف است. تابع احاطهگر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف یک تابع احاطهگر 2-رنگین کمانی میباشد بهطوری که مجموعهی یک مجموعهی احاطهگر برای گراف نباشد. وزن یک m2rdf ...
متن کامل?-احاطه گری در گراف ها
فرض کنید g گراقی از مرتبه n و فاقد رأس تنها باشد. زیر مجموعه s از رئوس گراف g را یک مجموعه ?-احاطه گر نامیم هرگاه برای هر رأس خارج از مجموعه s، داشته باشیم |n(v) ? s|?? |n(v)|.حال اگراین مسأله را برای تمام رئوس گرافل تعمیم دهیم مسأله جدیدی به نام ?-احاطه گری کلی بوجود می آید.همچنین در فصل های بعد این پایان نامه تأثیر حذف یک رأس و افزایش و کاهش یک یال را بر عدد ?-احاطه گری بررسی می نماییم و مفهو...
15 صفحه اولاحاطه ای پویا در گراف ها
مجموعه s را یک مجموعه احاطه گر پویا گوییم هر گاه به ازای هر عضو s حداقل یک از دو شرط زیر برقرار باشد. 1) {s - {v یک مجموعه احاطه گر باشد. 2) راسی مانند u در همسایگی v در خارج از s وجود داشته باشد که اگر v را با u در s جابجا کنیم آنگاه s یک احاطه گر باشد. یک مجموعه احاطه گر پویای g را می نیمال گویند هر گاه هیچ زیر مجموعه واقعی آن احاطه گر پویا نباشد. منییم تعداد یالهایی که با زیر تقسیم آنها ...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023