ترکیب مدل شبکه های عصبی مصنوعی با الگوریتم ژنتیک به منظور پیش بینی نرخ ارز و مقایسه آن با مدل های سری زمانی arima و garch
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه علامه طباطبایی - دانشکده اقتصاد
- نویسنده سید مهدی موسویان
- استاد راهنما عباس شاکری تیمور محمدی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
نرخ ارز از متغیر های تاثیر گذار بر اقتصاد است که همواه مورد توجه طیف وسیعی از اقتصاد دانان نیز بوده است . متغیر های بسیاری بر نرخ ارز تاثیر می گذارند که هم شامل عوامل اقتصادی می شود و هم عوامل غیر اقتصادی ، برخی در کوتاه مدت اثر گذارند و برخی در میان مدت و بلندمدت از این رو توصیف این نوسانات قیمت و پیش بینی آن کار آسانی نیست . در این پایان نامه از روش ترکیبی مدل شبکه های عصبی با الگوریتم ژنتیک برای این منظور استفاده گردید . ونتایج آن با مدل های arima و egarch مقایسه شده است . داده های مورد استفاده نرخ برابری دلار با ریال در بازار آزاد غیر رسمی به صورت ماهانه از فروردین 1365 تا اسفند 1390 را شامل می شد .که از این مشاهدات 12 ماه سال 1390 به عنوان داده های خارج نمونه و به منظور مقایسه مدل ها مورد استفاده قرار گرفت . در ادامه متغیر قیمت نفت هم به مدل اضافه شد و توانست نتایج را اندکی بهبود بخشد . ترکیب الگوریتم ژنتیک با شبکه عصبی هم به منظور انتخاب متغیر ها و هم به منظور آموزش شبکه مورد استفاده قرار گرفت . نتایج با استفاده از معیار rmse با هم مقایسه شد . شبکه عصبی ترکیبی بهتر از مدل arima و egarch توانست نوسانات را در سال 1390 را پیش بینی کند . و مدل egarch نیز در مقایسه با arima عملکرد بهتری داشت . همچنین اثر تغییر توپولوژی شبکه شامل تغییر تعداد نورون های لایه ورودی ونورون های لایه پنهان نیز بررسی گردید . به منظور بررسی بیشتر اثر افزودن متغیر قیمت نفت بر نتایج پیش بینی با الگو برداری از روش بوت استرپ از داده ها باز نمونه گیری شد و نتایج با هم مقایسه شد .
منابع مشابه
مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
متن کاملمقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملبررسی جهش پولی نرخ ارز و پیش بینی آن با شبکه های عصبی مصنوعی در ایران
یکی از مباحث مهم در اقتصاد کلان، رابطه بین شوکهای پولی و نوسانات نرخ ارز در قالب تئوری جهش پولی نرخ ارز است. از آنجا که اقتصاد ایران طی سالهای بعد از انقلاب همواره در معرض گسترش پایه پولی قرار داشته است، لذا بررسی رابطه بین انبساطهای پولی و نوسانات نرخ ارز و متعاقباً نقش افزایش درجه شناورسازی نرخ ارز بر میزان افزایش این نوسان، موضوع و هدف اصلی مقاله حاضر را تشکیل میدهد. بر این اساس در بخش او...
متن کاملمقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران
با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی زمانی1371:1 تا 1385:11 بوده و از شر...
متن کاملیک مقایسه بین مدل های اقتصادسنجی ساختاری , سری زمانی و شبکه عصبی برای بیش بینی نرخ ارز
در این مقاله استفاده از مدل های شبکه عصبی مصنوعی (ANN) و برخی الگوهای متداول در زمینه پیش بینی نرخ ارز، مورد آزمون و تحلیل قرار گرفته بدین صورت که، عملکرد پنج الگوی رگرسیون خطی در مقایسه با شبکه های عصبی مصنوعی، برای پیش بینی نرخ ارز اسمی (ریال ایران به دلار ایالات متحده آمریکا) مورد بررسی قرار می گیرد. الگوهای رگرسیون خطی عبارتند از روش باکس- جنکینز (الگوی میانگین متحرک انباشته خود همبسته)، فر...
متن کاملمدل سازی و پیش بینی کارایی بانک های دولتی و خصوصی ایران با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک
دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه علامه طباطبایی - دانشکده اقتصاد
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023