ناحیه بندی خودکار تصاویر تشدید مغناطیسی مغز انسان با استفاده از اطلاعات اطلس و با کمک ماشین های بردار پشتیبان
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز
- نویسنده کیوان کثیری
- استاد راهنما کامران کاظمی محمد صادق هل فروش
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
در این پایان نامه، هدف ارائه روشی جهت ناحیه بندی خودکار تصاویر تشدید مغناطیسی مغز به سه بافت ماده سفید، ماده خاکستری و مایع مغزی-نخاعی می باشد. در روش ناحیه بندی ارائه شده، الگوریتم یادگیری مبتنی بر ماشین های بردار پشتیبان با قدرت طبقه بندی بالا و خطای عمومی سازی پایین به کار گرفته می شود. در این روش، الگوریتم کمترین مربعات به منظور تخمین تابع چگالی احتمال بافت ها انتخاب شده است. به منظور کاهش هر چه بیشتر دخالت کاربر در روند ناحیه بندی، از اطلاعات اولیه اطلس جهت انتخاب نمونه های آموزشی و نیز آموزش الگوریتم یادگیری استفاده می شود. جهت بهبود دقت نتایج در روش ارائه شده، مدلی سلسله مراتبی به عنوان روش پیشنهادی دوم جهت ناحیه بندی پیشنهاد شده است. در این مدل طی سه مرحله، عملیات حذف بافت های غیر مغزی، پیش پردازش و استخراج مایع مغزی-نخاعی، و ناحیه بندی ماده سفید و ماده خاکستری انجام می گردد. پس از آن، یک روش ترکیبی به عنوان روش سوم پیشنهادی در قالب مدل سلسله مراتبی ارائه شده جهت ناحیه بندی مورد استفاده قرار می گیرد. در این روش، به منظور انجام دو مرحله اول از روش سلسله مراتبی از روش ناحیه بندی fsl-fast استفاده می شود. نتایج شبیه سازی بر داده های شبیه سازی شده و واقعی و ارزیابی های کمی و کیفی موید دقت و کارایی مدل سلسله مراتبی ترکیبی در مقایسه با روش های متداول ناحیه بندی و نیز روش fsl-fast می باشد. نتایج ناحیه بندی تصاویر مغزی به دست آمده می تواند به کمک پردازش های بعدی در تحلیل آناتومی و یا تشخیص بیماری ها و آسیب های مغزی مورد استفاده قرار گیرد.
منابع مشابه
بهبود ناحیه بندی خودکار تصاویر تشدید مغناطیسی مغز انسان با استفاده از اطلاعات مبتنی بر چند اطلس
در روش پیشنهادی ابتدا لازم است که تمامی اطلس های موجود بر یکدیگر منطبق شوند که این منطبق سازی بصورت خطی انجام می گیرد. سپس میزان شباهت تمامی اطلس های موجود را پس از انطباق، دو به دو با هم مقایسه کرده و این مقایسه با استفاده از معیار فاصله اقلیدسی محاسبه می گردد و مقادیر بدست آمده در یک ماتریس ذخیره می شود. ماتریس بدست آمده، به الگوریتم خوشه بندی lr{affinity propagation} } وارد شده تا اطلس های م...
15 صفحه اولاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملطبقه بندی تصاویر ابرطیفی با استفاده از ماشین بردار پشتیبان
در این تحقیق به پیاده سازی و ارزیابی الگوریتم ماشین های بردار پشتیبان در تصاویر ابرطیفی پرداخته شده است. در طبقه بندی تصاویر ابرطیفی به علت ابعاد زیاد، کم بودن نمونه های آموزشی، تغییرات مکانی امضای طیفی، وجود نویز دارای چالش هایی هستیم. با توجه به مشکلات مطرح شده در طبقه بندی تصاویر ابرطیفی نیاز به روش هایی می باشد که به راحتی با ابعاد بالای داده های ورودی کار کرده و همچنین با نمونه های آموزشی ...
15 صفحه اولتشخیص تومورهای مغزی از تصاویر تشدید مغناطیسی با تلفیق روشهای سوپرپیکسل و طبقهبندی ماشین بردار رابط(RVM)
تولید سلولهای اضافی اغلب تشکیل تودهای از بافت را میدهند که به آن تومور اطلاق میشود. تومورها میتوانند عملکرد صحیح مغز را مختل کنند و حتی منجر به مرگ بیمار گردند. یکی از راههای تشخیصی غیرتهاجمی برای این بیماری تصویربرداری تشدید مغناطیسی (MRI) میباشد. توسعهی یک سیستم تشخیصی اتوماتیک یا نیمهاتوماتیک به کمک کامپیوتر در درمانهای پزشکی مورد نیاز است. الگوریتمهای متعددی برای تشخیص تومور بکا...
متن کاملشناسایی خودکار چهره با استفاده از ماشین های بردار پشتیبان
هدف از شناسایی خودکار چهره، شناسایی هویت یک فرد به صورت خودکار توسط یک ماشین بر مبنای ویژگی های استخراج شده از تصاویر چهره آن فرد می باشد. در این رساله، دو الگوریتم جدید برای شناسایی خودکار چهره با استفاده از ماشین های بردار پشتیبان پیشنهاد می گردد. الگوریتم پیشنهادی اول بر مبنای ترکیبی از ویولت های گابور، آنالیز تفکیک کننده خطی مستقیم (dlda) و ماشین بردار پشتیبان (svm) بنا نهاده می شود. در ای...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023