نتایج جستجو برای: weighted gaussian mixture models
تعداد نتایج: 1132621 فیلتر نتایج به سال:
Despite all advances in the speaker recognition domain, Gaussian Mixture Models (GMM) remain the state-of-the-art modeling technique in speaker recognition systems. The key idea is to approximate the probability density function ( ) of the feature vectors associated to a speaker with a weighted sum of Gaussian densities. Although the extremely efficient Expectation-Maximization (EM) algorithm c...
Feature reduction is one kind of pattern recognition and decision making technique, which can be achieved by using Fuzzy Weighted Gaussian Mixture Model (FWGMM) based on the Gaussian Mixture Model. This model helps to find relevant features by using Fuzzy ordered weighted average, which leads to determine the similarity of the density mixture. The salient feature of this approach is to find the...
In this paper, in order to improve both the performance and the efficiency of the conventional Gaussian Mixture Models (GMMs), generalized GMMs are firstly introduced by integrating the conventional GMMs and the active curve axis GMMs for fitting non-linear datasets, and then two types of Fuzzy Gaussian Mixture Models (FGMMs) with a faster convergence process are proposed based on the generaliz...
Parsimonious Gaussian mixture models are developed using a latent Gaussian model which is closely related to the factor analysis model. These models provide a unified modeling framework which includes the mixtures of probabilistic principal component analyzers and mixtures of factor of analyzers models as special cases. In particular, a class of eight parsimonious Gaussian mixture models which ...
Definition A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian component densities. GMMs are commonly used as a parametric model of the probability distribution of continuous measurements or features in a biometric system, such as vocal-tract related spectral features in a speaker recognition system. GMM parameters are estimated ...
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید