نتایج جستجو برای: weighted analytic space

تعداد نتایج: 649236  

Journal: :sahand communications in mathematical analysis 2015
mostafa hassanlou

in this paper, we considered composition operators on weighted hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a hilbert-schmidt characterization and characterizes the membership in schatten-class for these operators. also, closed range composition operators  are investigated.

Journal: :bulletin of the iranian mathematical society 2015
y. x. liang z. h. zhou

we give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(c_{omega_1,varphi_1}^*‎ , ‎c_{omega_2,varphi_2}^*)$ on the hilbert space $mathcal{h}$ of analytic functions is supercyclic‎.

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

M. Farzi Haromi M. Fatehi M. Haji Shaabani,

Let -----. For an analytic self-map ---  of --- , Let --- be the composition operator with composite map ---  so that ----. Let ---  be a bounded analytic function on --- . The weighted composition operator ---  is defined by --- . Suppose that ---  is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....

We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^*‎ , ‎C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic‎.

2009
S. M. Vaezpour

Throughout this paper by using the frame theory we give a short proof for atomic decomposition for weighted Bergman space. In fact we show that the weighted Bergman space L 2 a (dA α) admit an atomic decomposition i.e every analytic function in this space can be presented as a linear combination of " atoms " defined using the normalized reproducing kernel of this space .

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1377

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1376

in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...

2009
DANIEL CARANDO

We consider weighted algebras of holomorphic functions on a Banach space. We determine conditions on a family of weights that assure that the corresponding weighted space is an algebra or has polynomial Schauder decompositions. We study the spectra of weighted algebras and endow them with an analytic structure. We also deal with composition operators and algebra homomorphisms, in particular to ...

2008
DANIEL CARANDO

We consider weighted algebras of holomorphic functions on a Banach space. We determine conditions on a family of weights that assure that the corresponding weighted space is an algebra or has polynomial Schauder decompositions. We study the spectra of weighted algebras and endow them with an analytic structure. We also deal with composition operators and algebra homomorphisms, in particular to ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید