نتایج جستجو برای: walking push recovery

تعداد نتایج: 256285  

This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...

2013
Marcell Missura Cedrick Münstermann Philipp Allgeuer Max Schwarz Julio Pastrana Sebastian Schüller Michael Schreiber Sven Behnke

Over the past few years, soccer-playing humanoid robots have advanced significantly. Elementary skills, such as bipedal walking, visual perception, and collision avoidance have matured enough to allow for dynamic and exciting games. When two robots are fighting for the ball, they frequently push each other and balance recovery becomes crucial. In this paper, we report on insights we gained from...

Journal: :CoRR 2017
Vijay Bhaskar Semwal

In this research, we have developed the data driven computational walking model to overcome the problem with traditional kinematics based model. Our model is adaptable and can adjust the parameter morphological similar to human. The human walk is a combination of different discrete sub-phases with their continuous dynamics. Any system which exhibits the discrete switching logic and continuous d...

2017
Michael Posa Twan Koolen Russ Tedrake

A fundamental requirement for legged robots is to maintain balance and prevent potentially damaging falls whenever possible. As a response to outside disturbances, fall prevention can be achieved by a combination of active balancing actions, e.g. through ankle torques and upper-body motion, and through reactive step placement. While it is widely accepted that stepping is required to respond to ...

Journal: :International Journal of Computers Communications & Control 2017

Journal: :CoRR 2018
Salman Faraji Hamed Razavi Auke Jan Ijspeert

In this paper, we present a simple control framework for on-line push recovery with dynamic stepping properties. Due to relatively heavy legs in our robot, we need to take swing dynamics into account and thus use a linear model called 3LP which is composed of three pendulums to simulate swing and torso dynamics. Based on 3LP equations, we formulate discrete LQR controllers and use a particular ...

Journal: :The Journal of experimental biology 2015
Tzu-wei P Huang Kenneth A Shorter Peter G Adamczyk Arthur D Kuo

The human ankle produces a large burst of 'push-off' mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental featur...

2016
Aurélien Ibanez Philippe Bidaud Vincent Padois Jadran Lenarčič Oussama Khatib Aurelien Ibanez

This paper proposes an original Model Predictive Control approach to the walking control for humanoid robots, which allows to generate stable walking motions without the prior definition of footsteps positions and instants. Both the instant and amplitude of the changes in the supporting surface are part of the walking motion generation problem, and are described by a set of highly-constrained i...

2014
Joshua M. Caputo Steven H. Collins

Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید