نتایج جستجو برای: vertex minimal cn
تعداد نتایج: 201229 فیلتر نتایج به سال:
we define minimal cn-dominating graph $mathbf {mcn}(g)$, commonality minimal cn-dominating graph $mathbf {cmcn}(g)$ and vertex minimal cn-dominating graph $mathbf {m_{v}cn}(g)$, characterizations are given for graph $g$ for which the newly defined graphs are connected. further serval new results are developed relating to these graphs.
a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...
A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...
in this paper, we define the common minimal common neighborhooddominating signed graph (or common minimal $cn$-dominating signedgraph) of a given signed graph and offer a structuralcharacterization of common minimal $cn$-dominating signed graphs.in the sequel, we also obtained switching equivalencecharacterization: $overline{sigma} sim cmcn(sigma)$, where$overline{sigma}$ and $cmcn(sigma)$ are ...
let z2 = {0, 1} and g = (v ,e) be a graph. a labeling f : v → z2 induces an edge labeling f* : e →z2 defined by f*(uv) = f(u).f (v). for i ε z2 let vf (i) = v(i) = card{v ε v : f(v) = i} and ef (i) = e(i) = {e ε e : f*(e) = i}. a labeling f is said to be vertex-friendly if | v(0) − v(1) |≤ 1. the vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. in this paper ...
Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...
Let G = (V,E) be a simple graph. A set S ⊆ V is a dominating set of G, if every vertex in V \S is adjacent to at least one vertex in S. Let C n be the family of dominating sets of a cycle Cn with cardinality i, and let d(Cn, i) = |C i n|. In this paper, we construct C i n, and obtain a recursive formula for d(Cn, i). Using this recursive formula, we consider the polynomial D(Cn, x) = ∑n i=⌈n 3 ...
A vertex v in an exponential dominating set assigns weight ( 1 2 )dist(v,u) to vertex u. An exponential dominating set of a graph G is a subset of V (G) such that every vertex in V (G) has been assigned a sum weight of at least 1. In this paper the exponential dominating number for the graph Cm × Cn, denoted by γe(Cm × Cn) is discussed. Anderson et. al. [1] proved that mn 15.875 ≤ γe(Cm × Cn) ≤...
A graph G is called (H; k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any k of its vertices; stab(H; k) denotes the minimum size among the sizes of all (H; k)-vertex stable graphs. In this paper we deal with (Cn; k)vertex stable graphs with minimum size. For each n we prove that stab(Cn; 1) is one of only two possible values and we give the exact value for infini...
To every vertex algebra V we associate a canonical decreasing sequence of subspaces and prove that the associated graded vector space gr(V ) is naturally a vertex Poisson algebra, in particular a commutative vertex algebra. We establish a relation between this decreasing sequence and the sequence Cn introduced by Zhu. By using the (classical) algebra gr(V ), we prove that for any vertex algebra...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید