نتایج جستجو برای: vertex friendly
تعداد نتایج: 82292 فیلتر نتایج به سال:
let z2 = {0, 1} and g = (v ,e) be a graph. a labeling f : v → z2 induces an edge labeling f* : e →z2 defined by f*(uv) = f(u).f (v). for i ε z2 let vf (i) = v(i) = card{v ε v : f(v) = i} and ef (i) = e(i) = {e ε e : f*(e) = i}. a labeling f is said to be vertex-friendly if | v(0) − v(1) |≤ 1. the vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. in this paper ...
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...
let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...
let $g=(v,e)$ be a simple graph. an edge labeling $f:eto {0,1}$ induces a vertex labeling $f^+:vtoz_2$ defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where $z_2={0,1}$ is the additive group of order 2. for $iin{0,1}$, let $e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$. a labeling $f$ is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. $i_f(g)=v_f(...
For a graph G = (V,E) and a binary labeling f : V (G) → Z2, let vf (i) = |f−1(i)|. The labling f is said to be friendly if |vf (1)−vf (0)| ≤ 1. Any vertex labeling f : V (G) → Z2 induces an edge labeling f∗ : E(G) → Z2 defined by f∗(xy) = |f(x)− f(y)|. Let ef (i) = |f∗−1(i)|. The friendly index set of the graph G, denoted by FI(G), is defined by FI(G) = {|ef (1)− ef (0)| : f is a friendly verte...
A symmetric m×m matrix M with entries taken from {0, 1, ∗} gives rise to a graph partition problem, asking whether a graph can be partitioned into m vertex sets matched to the rows (and corresponding columns) of M such that, if Mij = 1, then any two vertices between the corresponding vertex sets are joined by an edge, and if Mij = 0 then any two vertices between the corresponding vertex sets ar...
Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A labeling f : V(G) ....... A induces a edge labeling r : E{G) ....... A defined by r(xy) = f(x) + f(y) for each xy E E. For each i E A, let vJ(i) card{v E V(G) : f(v) i} and eJ(i) card{e E E(G) : r(e) i}. Let c(J) {leJ(i) eJ(j)1 : = = (i,j) E A x A}. A labeling f of a graph G is said to be A-friendly if IVJ...
Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A labeling f: V(G) A induces an edge labeling f"': E(G) A defined by f"'(xy) = f(x) + fey), for each edge xy e E(G). For i e A, let vt<i) = card { v e V(G) : f(v) = i} and er(i) = card ( e e E(G) : f"'(e) = i}. Let c(f) = {Iet<i) etG)1 : (i, j) e A x A}. A labeling f of a graph G is said to be A friendly if...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید