نتایج جستجو برای: vertex cut and cut vertex of a connected graph
تعداد نتایج: 25631470 فیلتر نتایج به سال:
the rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. let $r$ be a ring. let $mathbb{a}(r)$ denote the set of all annihilating ideals of $r$ and let $mathbb{a}(r)^{*} = mathbb{a}(r)backslash {(0)}$. the annihilating-ideal graph of $r$, denoted by $mathbb{ag}(r)$ is an undirected simple graph whose vertex set is $mathbb{a}(r)...
let g=(v,e) be a graph with vertex set v and edge set e.for two vertices u,v of g ,the closed interval i[u,v] ,consists of u,v and all vertices lying in some u-v geodesic in g.if s is a set of vertices of g then i[s]is the union of all sets i[u,v]for u,v ? s. if i[s]=v(g) , then s is a geodetic set for g.the geodetic number g(g) is the minimum cardinality of geodetic set.the maximum cardinalit...
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
a signed graph (marked graph) is an ordered pair $s=(g,sigma)$$(s=(g,mu))$, where $g=(v,e)$ is a graph called the underlyinggraph of $s$ and $sigma:erightarrow{+,-}$$(mu:vrightarrow{+,-})$ is a function. for a graph $g$, $v(g),e(g)$ and $c(g)$ denote its vertex set, edge set and cut-vertexset, respectively. the lict graph $l_{c}(g)$ of a graph $g=(v,e)$is defined as the graph having vertex set ...
a emph{signed graph} (or, in short, emph{sigraph}) $s=(s^u,sigma)$ consists of an underlying graph $s^u :=g=(v,e)$ and a function $sigma:e(s^u)longrightarrow {+,-}$, called the signature of $s$. a emph{marking} of $s$ is a function $mu:v(s)longrightarrow {+,-}$. the emph{canonical marking} of a signed graph $s$, denoted $mu_sigma$, is given as $$mu_sigma(v) := prod_{vwin e(s)}sigma(vw).$$the li...
A vertex-cut X is said to be a restricted cut of a graph G if it is a vertex-cut such that no vertex u in G has all its neighbors in X. Clearly, each connected component of G − X must have at least two vertices. The restricted connectivity κ′(G) of a connected graph G is defined as the minimum cardinality of a restricted cut. Additionally, if the deletion of a minimum restricted cut isolates on...
in this paper we defined the vertex removable cycle in respect of the following, if $f$ is a class of graphs(digraphs) satisfying certain property, $g in f $, the cycle $c$ in $g$ is called vertex removable if $g-v(c)in in f $. the vertex removable cycles of eulerian graphs are studied. we also characterize the edge removable cycles of regular graphs(digraphs).
A cut-vertex in a graph G is a vertex whose removal increases the number of connected components of G. An end-block of G is a block with a single cut-vertex. In this paper we establish upper bounds on the numbers of end-blocks and cut-vertices in a 4-regular graph G and claw-free 4-regular graphs. We characterize the extremal graphs achieving these bounds.
A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید