نتایج جستجو برای: ultraspherical polynomials
تعداد نتایج: 37920 فیلتر نتایج به سال:
1. It will be recalled that the ultraspherical polynomials are those which are orthogonal on the interval ( — 1, 1), corresponding to the weight function (1— x2)x~1/2, X>—1/2. In what follows X = 0 will also be excluded. The coefficients of these polynomials are functions of the parameter X appearing in the weight function, and the symbol P„(x, X), indicative of this fact, will be used to denot...
We prove that transplantations for Jacobi polynomials can be derived from representation of a special integral operator as fractional Weyl’s integral. Furthermore, we show that, in a sense, Jacobi transplantation can be reduced to transplantations for ultraspherical polynomials. As an application of these results, we obtain transplantation theorems for Jacobi polynomials in ReH1 and BMO. The pa...
We present a computer-assisted proof of positivity of sums over kernel polynomials for ultraspherical Jacobi polynomials.
This paper provides the details of Remark 5.4 in the author’s paper “Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group”, SIAM J. Math. Anal. 24 (1993), 795–813. In formula (5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomials was expanded as a finite Fourier series with a product of two 3phi2’s as Fourier coefficients. The proof given there use...
Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...
We characterize the class of ultraspherical polynomials in between all symmetric orthogonal polynomials on [−1, 1] via the special form of the representation of the derivatives pn+1(x) by pk(x), k = 0, ..., n.
A Necessary and Sufficient Condition for Nonnegative Product Linearization of Orthogonal Polynomials
cos nθ cos mθ = 2 cos(n − m)θ + 2 cos(n + m)θ. Certain classical orthogonal polynomials admit explicit computation of the coefficients c(n,m, k). For example, they are known explicitly for the ultraspherical polynomials along with their q-analogs [8]. However, they are not available in a simple form for the nonsymmetric Jacobi polynomials (see [7]). The first general criterion for nonnegativity...
The orthogonal polynomials pn satisfy Turán’s inequality if p 2 n(x)− pn−1(x)pn+1(x) ≥ 0 for n ≥ 1 and for all x in the interval of orthogonality. We give general criteria for orthogonal polynomials to satisfy Turán’s inequality. This yields the known results for classical orthogonal polynomials as well as new results, for example, for the q–ultraspherical polynomials.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید