نتایج جستجو برای: tracial rokhlin property
تعداد نتایج: 159103 فیلتر نتایج به سال:
We give examples of actions of Z/2Z on AF algebras and AT algebras which demonstrate the differences between the (strict) Rokhlin property and the tracial Rokhlin property, and between (strict) approximate representability and tracial approximate representability. Specific results include the following. We determine exactly when a product type action of Z/2Z on a UHF algebra has the tracial Rok...
We study a general Kishimoto’s problem for automorphisms on simple C∗-algebras with tracial rank zero. Let A be a unital separable simple C∗-algebra with tracial rank zero and let α be an automorphism. Under the assumption that α has certain Rokhlin property, we present a proof that A ⋊α Z has tracial rank zero. We also show that if the induced map α∗0 on K0(A) fixes a “dense” subgroup of K0(A)...
We define the tracial Rokhlin property for actions of finite cyclic groups on stably finite simple unital C*-algebras. We prove that the crossed product of a stably finite simple unital C*-algebra with tracial rank zero by an action with this property again has tracial rank zero. Under a kind of weak approximate innerness assumption and one other technical condition, we prove that if the action...
We define “tracial” analogs of the Rokhlin property for actions of finite groups, approximate representability of actions of finite abelian groups, and of approximate innerness. We prove the following four analogs of related “nontracial” results. • The crossed product of an infinite dimensional simple separable unital C*-algebra with tracial rank zero by an action of a finite group with the tra...
Let A be a unital separable simple C∗-algebra with TR(A) ≤ 1 and α be an automorphism. We show that if α satisfies the tracially cyclic Rokhlin property then TR(A ⋊α Z) ≤ 1. We also show that whenever A has a unique tracial state and αm is uniformly outer for each m and αr is approximately inner for some r > 0, α satisfies the tracial cyclic Rokhlin property. By applying the classification theo...
We introduce the tracial Rokhlin property for automorphisms of stably finite simple unital C*-algebras containing enough projections. This property is formally weaker than the various Rokhlin properties considered by Herman and Ocneanu, Kishimoto, and Izumi. Our main results are as follows. Let A be a stably finite simple unital C*-algebra, and let α be an automorphism of A which has the tracia...
let $omega$ be a class of unital $c^*$-algebras. we introduce the notion of a local tracial $omega$-algebra. let $a$ be an $alpha$-simple unital local tracial $omega$-algebra. suppose that $alpha:gto $aut($a$) is an action of a finite group $g$ on $a$ which has a certain non-simple tracial rokhlin property. then the crossed product algebra $c^*(g,a,alpha)$ is a unital local traci...
Let A be a unital simple AT-algebra of real rank zero. Given an isomorphism γ1 : K1(A)→ K1(A), we show that there is an automorphism α : A → A such that α∗1 = γ1 which has the tracial Rokhlin property. Consequently, the crossed product A ⋊α Z is a simple unital AH-algebra with real rank zero. We also show that automorphism with Rokhlin property can be constructed from minimal homeomorphisms on ...
We introduce a general class of automorphisms of rotation algebras, the noncommutative Furstenberg transformations. We prove that fully irrational noncommutative Furstenberg transformations have the tracial Rokhlin property, which is a strong form of outerness. We conclude that crossed products by these automorphisms have stable rank one, real rank zero, and order on projections determined by t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید