نتایج جستجو برای: total domatic number
تعداد نتایج: 1830962 فیلتر نتایج به سال:
a set $s$ of vertices of a graph $g=(v,e)$ without isolated vertex is a {em total dominating set} if every vertex of $v(g)$ is adjacent to some vertex in $s$. the {em total domatic number} of a graph $g$ is the maximum number of total dominating sets into which the vertex set of $g$ can be partitioned. we show that the total domatic number of a random $r$-regular graph is almost...
The paper studies the domatic numbers and the total domatic numbers of graphs having cut-vertices. We shall study the domatic number d(G) and the total domatic number d t (G) of a graph G. A survey of the related theory is given in 3]. We consider nite, undirected graphs without loops or multiple edges. A subset D of the vertex set V (G) of a graph G is called dominating (total dominating), if ...
We investigate the apparent difficulty of finding domatic partitions in graphs using tools from computability theory. We consider nicely presented (i.e., computable) infinite graphs and show that even if the domatic number is known, there might not be any algorithm for producing a domatic partition of optimal size. However, we prove that smaller domatic partitions can be constructed if we restr...
For a positive integer k, a total {k}-dominating function of a digraph D is a function f from the vertex set V (D) to the set {0, 1, 2, . . . , k} such that for any vertex v ∈ V (D), the condition ∑ u∈N(v) f(u) ≥ k is fulfilled, where N(v) consists of all vertices of D from which arcs go into v. A set {f1, f2, . . . , fd} of total {k}-dominating functions of D with the property that ∑ d i=1 fi(...
Let G be a graph. A total dominating set of G is a set S of vertices of G such that every vertex is adjacent to at least one vertex in S. The total domatic number of a graph is the maximum number of total dominating sets which partition the vertex set of G. In this paper we would like to characterize the cubic graphs with total domatic number at least two.
For a positive integer k, a total {k}-dominating function of a graph G without isolated vertices is a function f from the vertex set V (G) to the set {0, 1, 2, . . . , k} such that for any vertex v ∈ V (G), the condition ∑ u∈N(v) f(u) ≥ k is fulfilled, where N(v) is the open neighborhood of v. The weight of a total {k}-dominating function f is the value ω(f) = ∑ v∈V f(v). The total {k}-dominati...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید