نتایج جستجو برای: toeplitz decomposition

تعداد نتایج: 102207  

Journal: :transactions on combinatorics 2012
samira hossein ghorban

let $n,t_1,...,t_k$ be distinct positive integers. a toeplitz graph $g=(v, e)$ denoted by $t_n$ is a graph, where $v ={1,...,n}$ and $e= {(i,j) : |i-j| in {t_1,...,t_k}}$.in this paper, we present some results on decomposition of toeplitz graphs.

1996
FRANKLIN T. LUK SANZHENG QIAO

In signal and image processing, regularization often requires a rank-revealing decomposition of a symmetric Toeplitz matrix with a small rank deeciency. In this paper, we present an eecient factorization method that exploits symmetry as well as the rank and Toeplitz properties of the given matrix.

2012
Sheng Bau

A suitable generalization for both the concept of Cayley graphs and that of Toeplitz graphs is given in this note and a number of interesting open problems are proposed. A natural decomposition theorem is obtained for generalized Topelitz graphs and connected generalized Toeplitz graphs. These are new observations and their proofs are direct from the definition.

Journal: :Signal Processing 2018
Zai Yang Lihua Xie

The classical result of Vandermonde decomposition of positive semidefinite Toeplitz matrices can date back to the early twentieth century. It forms the basis of modern subspace and recent atomic norm methods for frequency estimation. In this paper, we study the Vandermonde decomposition in which the frequencies are restricted to lie in a given interval, referred to as frequency-selective Vander...

Journal: :Math. Comput. 1996
Vasily Strela Eugene E. Tyrtyshnikov

The eigenvalue clustering of matrices S−1 n An and C −1 n An is experimentally studied, where An, Sn and Cn respectively are Toeplitz matrices, Strang, and optimal circulant preconditioners generated by the Fourier expansion of a function f(x). Some illustrations are given to show how the clustering depends on the smoothness of f(x) and which preconditioner is preferable. An original technique ...

Journal: :IEEE transactions on quantum engineering 2023

Toeplitz matrix reconstruction algorithms (TMRAs) are one of the central subroutines in array processing for wireless communication applications. The classical TMRAs have shown excellent accuracy spectral estimation both uncorrelated and coherence sources recent era. However, incorporate eigenvalue decomposition technique estimating eigenvalues Toeplitz-structured covariance matrices that deman...

2012
Nizar Tayem

In this paper, a new algorithm for a high resolution Direction Of Arrival (DOA) estimation method for multiple wideband signals is proposed. The proposed method proceeds in two steps. In the first step, the received signals data is decomposed in a Toeplitz form using the first-order statistics. In the second step, The QR decomposition is applied on the constructed Toeplitz matrix. Compared with...

1997
A. W. BOJANCZYK

In the rst part 13] of the paper transformationsmappingToeplitz and Toeplitz-plus-Hankel matrices into generalizedCauchy matrices were studied. In this second part fast algorithms for LU-factorization and inversion of generalized Cauchy matrices are discussed. It is shown that the combinationof transformation pivoting techniques leads to algorithms for indeenite Toeplitz and Toeplitz-plus-Hanke...

Journal: :IEEE Trans. Automat. Contr. 2007
Tryphon T. Georgiou

When a covariance matrix with a Toeplitz structure is written as the sum of a singular one and a positive scalar multiple of the identity, the singular summand corresponds to the covariance of a purely deterministic component of a time-series whereas the identity corresponds to white noise—this is the Carathéodory-Fejér-Pisarenko (CFP) decomposition. In the present paper we study multivariable ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->