نتایج جستجو برای: supersolvable group
تعداد نتایج: 979303 فیلتر نتایج به سال:
in this paper we find systems of subgroups of a finite group, which $bbb p$-subnormality guarantees supersolvability of the whole group.
in this paper we find systems of subgroups of a finite group, which $bbb p$nobreakdash-hspace{0pt}subnormality guarantees supersolvability of the whole group.
In this note, we apply the group-theoretic method to study Artin’s conjecture, and introduce the notations of nearly nilpotent groups and nearly supersolvable groups to answer of a question of Arthur and Clozel. As an application, we show that Artin’s conjecture is valid for all nearly supersolvable Galois extensions of number fields as well as all solvable Frobenius extensions.
let $g={rm sl}_2(p^f)$ be a special linear group and $p$ be a sylow $2$-subgroup of $g$, where $p$ is a prime and $f$ is a positive integer such that $p^f>3$. by $n_g(p)$ we denote the normalizer of $p$ in $g$. in this paper, we show that $n_g(p)$ is nilpotent (or $2$-nilpotent, or supersolvable) if and only if $p^{2f}equiv 1,({rm mod},16)$.
Let (W,S) be an arbitrary Coxeter system. For each sequence ω = (ω1, ω2, . . .) ∈ S∗ in the generators we define a partial order—called the ω-sorting order—on the set of group elements Wω ⊆ W that occur as finite subwords of ω. We show that the ω-sorting order is a supersolvable join-distributive lattice and that it is strictly between the weak and strong Bruhat orders on the group. Moreover, t...
We show that the set of homomorphisms between two supersolvable groups can be locally list decoded up to the minimum distance of the code, extending the results of Dinur et al who studied the case where the groups are abelian. Moreover, when specialized to the abelian case, our proof is more streamlined and gives a better constant in the exponent of the list size. The constant is improved from ...
Let Jt be the class of binary matroids without a Fano plane as a submatroid. We show that every supersolvable matroid in JÍ is graphic, corresponding to a chordal graph. Then we characterize the case that the modular join of two matroids is supersolvable. This is used to study modular flats and modular joins of binary supersolvable matroids. We decompose supersolvable matroids in JH as modular ...
let $g={rm sl}_2(p^f)$ be a special linear group and $p$ be a sylow $2$-subgroup of $g$, where $p$ is a prime and $f$ is a positive integer such that $p^f>3$. by $n_g(p)$ we denote the normalizer of $p$ in $g$. in this paper, we show that $n_g(p)$ is nilpotent (or $2$-nilpotent, or supersolvable) if and only if $p^{2f}equiv 1,({rm mod},16)$.
This paper presents a new algorithm for constructing a complete list of pairwise inequivalent ordinary irreducible representations of a finite solvable group G. The input of the algorithm is a pc-presentation corresponding to a composition series refining a chief series of G. Modifying the Baum-Clausen-Algorithm for supersolvable groups and combining this with an idea of Plesken for constructin...
Let G be a finite simple graph. From the pioneering work of R. P. Stanley it is known that the cycle matroid of G is supersolvable if and only if G is chordal. The chordal binary matroids are not in general supersolvable. Nevertheless we prove that every supersolvable binary matroid determines canonically a chordal graph.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید