نتایج جستجو برای: stratified l generalized convergence space
تعداد نتایج: 1366274 فیلتر نتایج به سال:
This paper focuses on the relationships between stratified $L$-conver-gence spaces, stratified strong $L$-convergence spaces and stratifiedlevelwise $L$-convergence spaces. It has been known that: (1) astratified $L$-convergence space is precisely a left-continuousstratified levelwise $L$-convergence space; and (2) a stratifiedstrong $L$-convergence space is naturally a stratified $L$-converg...
The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...
In this paper we provide a common framework for different stratified $LM$-convergence spaces introduced recently. To this end, we slightly alter the definition of a stratified $LMN$-convergence tower space. We briefly discuss the categorical properties and show that the category of these spaces is a Cartesian closed and extensional topological category. We also study the relationship of our cat...
In this paper, it is shown that the category of stratified $L$-generalized convergence spaces is monoidal closed if the underlying truth-value table $L$ is a complete residuated lattice. In particular, if the underlying truth-value table $L$ is a complete Heyting Algebra, the Cartesian closedness of the category is recaptured by our result.
we develop a theory of stratified $lm$-filters which generalizes the theory of stratified $l$-filters. our stratification condition explicitly depends on a suitable mapping between the lattices $l$ and $m$. if $l$ and $m$ are identical and the mapping is the identity mapping, then we obtain the theory of stratified $l$-filters. based on the stratified $lm$-filters, a general theory of lattice-v...
we show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. further we study the preservation of diagonal conditions, which characterize approach spaces. it is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...
This paper presents the concepts of $(L,M)$-fuzzy Q-convergence spaces and stratified $(L,M)$-fuzzy Q-convergence spaces. It is shown that the category of stratified $(L,M)$-fuzzy Q-convergence spaces is a bireflective subcategory of the category of $(L,M)$-fuzzy Q-convergence spaces, and the former is a Cartesian-closed topological category. Also, it is proved that the category of stratified $...
Considering a commutative unital quantale L as the truth value table and using the tool of L-generalized convergence structures of stratified L-filters, this paper introduces a kind of fuzzy upper topology, called fuzzy S-upper topology, on L-preordered sets. It is shown that every fuzzy join-preserving L-subset is open in this topology. When L is a complete Heyting algebra, for every completel...
In this paper, it is shown that the category of $L$-ordered fuzzifying convergence spaces contains the category of pretopological $L$-ordered fuzzifying convergence spaces as a bireflective subcategory and the latter contains the category of topological $L$-ordered fuzzifying convergence spaces as a bireflective subcategory. Also, it is proved that the category of $L$-ordered fuzzifying conver...
The notion of stratified (L, M)-semiuniform convergence tower spaces is introduced, which extends the notions ofprobabilistic semiuniform convergence spaces and lattice-valued semiuniform convergence spaces. The resulting categoryis shown to be a strong topological universe. Besides, the relations between our category and that of stratified (L, M)-filter tower spaces are studied.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید