نتایج جستجو برای: spine of fourier stieltjes algebra
تعداد نتایج: 21179430 فیلتر نتایج به سال:
we commence by using from a new norm on l1(g) the -algebra of all integrable functions on locally compact group g, to make the c-algebra c(g). consequently, we find its dual b(g), which is a banach algebra so-called fourier-stieltjes algebra, in the set of all continuous functions on g. we consider most of important basic theorems about this algebra. this consideration leads to a rather com...
in this paper, we investigate the relation between l-projections and conditional expectations on subalgebras of the fourier-stieltjes algebra b(g), and we will show that compactness of g plays an important role in this relation.
For a unital foundation topological *-semigroup S whose representations separate points of S, we show that the spectrum of the Fourier-Stieltjes algebra B(S) is a compact semitopological semigroup. We also calculate B(S) for several examples of S.
In this paper, we investigate the relation between L-projections and conditional expectations on subalgebras of the Fourier Stieltjes algebra B(G), and we will show that compactness of G plays an important role in this relation.
We give an example of a non-compact, locally compact group G such that its Fourier–Stieltjes algebra B(G) is operator amenable. Furthermore, we characterize those G for which A * (G)—the spine of B(G) as introduced by M. Ilie and the second named author is operator amenable and show that A * (G) is operator weakly amenable for each G.
We give an example of a non-compact, locally compact group G such that its Fourier–Stieltjes algebra B(G) is operator amenable. Furthermore, we characterize those G for which A * (G)—the spine of B(G) as introduced by M. Ilie and the second named author—is operator amenable and show that A * (G) is operator weakly amenable for each G.
We give an example of a non-compact, locally compact group G such that its Fourier–Stieltjes algebra B(G) is operator amenable. Furthermore, we characterize those G for which A * (G)—the spine of B(G) as introduced by M. Ilie and the second named author—is operator amenable and show that A * (G) is operator weakly amenable for each G.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید