نتایج جستجو برای: soluble group
تعداد نتایج: 1061603 فیلتر نتایج به سال:
for any group g, let c(g) denote the set of centralizers of g.we say that a group g has n centralizers (g is a cn-group) if |c(g)| = n.in this note, we prove that every finite cn-group with n ≤ 21 is soluble andthis estimate is sharp. moreover, we prove that every finite cn-group with|g| < 30n+1519 is non-nilpotent soluble. this result gives a partial answer to aconjecture raised by a. ashrafi in ...
a subgroup $h$ is said to be $nc$-supplemented in a group $g$ if there exists a subgroup $kleq g$ such that $hklhd g$ and $hcap k$ is contained in $h_{g}$, the core of $h$ in $g$. we characterize the supersolubility of finite groups $g$ with that every maximal subgroup of the sylow subgroups is $nc$-supplemented in $g$.
let $h$, $l$ and $x$ be subgroups of a finite group$g$. then $h$ is said to be $x$-permutable with $l$ if for some$xin x$ we have $al^{x}=l^{x}a$. we say that $h$ is emph{$x$-quasipermutable } (emph{$x_{s}$-quasipermutable}, respectively) in $g$ provided $g$ has a subgroup$b$ such that $g=n_{g}(h)b$ and $h$ $x$-permutes with $b$ and with all subgroups (with all sylowsubgroups, respectively) $v$...
let $g$ be a finite $p$-soluble group, and $p$ a sylow $p$-sub-group of $g$. it is proved that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are contained in the $k$-th term of the upper central series of $p$, then the $p$-length of $g$ is at most $2m+1$, where $m$ is the greatest integer such that $p^m-p^{m-1}leq k$, and the exponent of the image of $p$...
let $g$ be a finite $p$-soluble group, and $p$ a sylow $p$-subgroup of $g$. it is proved that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are contained in the $k$-th term of the upper central series of $p$, then the $p$-length of $g$ is at most $2m+1$, where $m$ is the greatest integer such that $p^m-p^{m-1}leq k$, and the exponent of the image of $p$...
a normal subgroup $n$ of a group $g$ is said to be an $emph{omissible}$ subgroup of $g$ if it has the following property: whenever $xleq g$ is such that $g=xn$, then $g=x$. in this note we construct various groups $g$, each of which has an omissible subgroup $nneq 1$ such that $g/ncong sl_2(k)$ where $k$ is a field of positive characteristic.
For any group G, let C(G) denote the set of centralizers of G.We say that a group G has n centralizers (G is a Cn-group) if |C(G)| = n.In this note, we prove that every finite Cn-group with n ≤ 21 is soluble andthis estimate is sharp. Moreover, we prove that every finite Cn-group with|G| < 30n+1519 is non-nilpotent soluble. This result gives a partial answer to aconjecture raised by A. Ashrafi in ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید