نتایج جستجو برای: sivashinsky equation
تعداد نتایج: 229784 فیلتر نتایج به سال:
The nonlocal Kuramoto-Sivashinsky equation arises in the modeling of the flow of a thin film of viscous liquid falling down an inclined plane, subject to an applied electric field. In this paper, the authors show that, as the coefficient of the nonlocal integral term goes to zero, the solution trajectories and the maximal attractor of the nonlocal Kuramoto-Sivashinsky equation converge to those...
We continue to study a simple integro-differential equation: the Quasi-Steady equation (QS) of flame front dynamics. This second order quasi-linear parabolic equation with a non-local term is dynamically similar to the Kuramoto-Sivashinsky (KS) equation. In [FGS03], where it was introduced, its well-posedness and proximity for finite time intervals to the KS equation in Sobolev spaces of period...
in this paper, the solution of the evolutionaryfourth-order in space, sivashinsky equation is obtained by meansof homotopy perturbation method (textbf{hpm}). the results revealthat the method is very effective, convenient and quite accurateto systems of nonlinear partial differential equations.
New stationary solutions of the (Michelson) Sivashinsky equation of premixed flames are obtained numerically in this paper. Some of these solutions, of the bicoalescent type recently described by Guidi and Marchetti, are stable with Neumann boundary conditions. With these boundary conditions, the time evolution of the Sivashinsky equation in the presence of a moderate white noise is controlled ...
We prove that the Kuramoto-Sivashinsky equation is locally controllable in 1D and in 2D with one boundary control. Our method consists in combining several general results in order to reduce the nullcontrollability of this nonlinear parabolic equation to the exact controllability of a linear beam or plate system. This improves known results on the controllability of Kuramoto-Sivashinsky equatio...
A non linear Itô equation in a Hilbert space is studied by means of Girsanov theorem. We consider a non linearity of polynomial growth in suitable norms, including that of quadratic type which appears in the Kuramoto–Sivashinsky equation and in the Navier– Stokes equation. We prove that Girsanov theorem holds for the 1-dimensional stochastic Kuramoto–Sivashinsky equation and for a modification ...
We revisit the Near Equidiffusional Flames (NEF) model introduced by Matkowsky and Sivashinsky in 1979 and consider a simplified, quasisteady version of it. This simplification allows, near the planar front, an explicit derivation of the front equation. The latter is a pseudodifferential fully nonlinear parabolic equation of the fourth-order. First, we study the (orbital) stability of the null ...
We analyse the nonlinear Kuramoto–Sivashinsky equation to develop accurate discretisations modeling its dynamics on coarse grids. The analysis is based upon centre manifold theory so we are assured that the discretisation accurately models the dynamics and may be constructed systematically. The theory is applied after dividing the physical domain into small elements by introducing isolating int...
in this paper we obtain exact solutions of the generalized kuramoto-sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. the methods used to determine the exact solutions of the underlying equation are the lie group analysis and the simplest equation method. the solutions obtained are then plotted.
Kuramoto-Sivashinsky equation was introduced by Kuramoto [1976] in one-spatial dimension, for the study of phase turbulance in the BelousovZhabotinsky reaction. Sivashinsky derived it independently in the context of small thermal diffusive instabilities for laminar flame fronts. It and related equations have also been used to model directional solidification and , in multiple spatial dimensions...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید