نتایج جستجو برای: secondary submodules

تعداد نتایج: 303781  

Journal: :علوم 0
عبدالجواد طاهری زاده abdoljavad taherizadeh دانشگاه تربیت معلم

let r be a commutative ring with non-zero identity and m be a unital r-module. then the concept of quasi-secondary submodules of m is introduced and some results concerning this class of submodules is obtained

2002
SHAHABADDIN EBRAHIMI ATANI

Journal: :International Journal of Mathematics and Mathematical Sciences 2002

Journal: :Journal of Physics: Conference Series 2021

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper, we will introduce the secondary radical of a submodule $N$ of $M$ as the sum of all secondary submodules of $M$ contained in $N$, denoted by $sec^*(N)$, and explore the related properties. We will show that this class of modules contains the family of second radicals properly and can be regarded as a dual o...

‎In this work‎, ‎we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules‎. ‎Let $R$ be a commutative ring with‎ ‎identity‎. ‎We say that a non-zero submodule $N$ of an $R$-module $M$ is a‎ ‎emph{classical 2-absorbing secondary submodule} of $M$ ...

Journal: :Communications in Algebra 2020

Journal: :International Electronic Journal of Algebra 2020

Journal: :Journal of Algebra and Its Applications 2021

Let [Formula: see text] be a commutative ring and nonzero text]-module. We introduce the class of pseudo-strongly (PS)-hollow submodules text]. Inspired by theory modules with secondary representations, we investigate which can written as finite sums PS-hollow submodules. In particular, provide existence uniqueness theorems for minimal strongly representations over Artinian rings.

Journal: :bulletin of the iranian mathematical society 0
t. amouzegar kalati mazandaran university, department of mathematic d. keskin tutuncu hacettepe university, mathematics department

let $m_r$ be a module with $s=end(m_r)$. we call a submodule $k$ of $m_r$ annihilator-small if $k+t=m$, $t$ a submodule of $m_r$, implies that $ell_s(t)=0$, where $ell_s$ indicates the left annihilator of $t$ over $s$. the sum $a_r(m)$ of all such submodules of $m_r$ contains the jacobson radical $rad(m)$ and the left singular submodule $z_s(m)$. if $m_r$ is cyclic, then $a_r(m)$ is the unique ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید