نتایج جستجو برای: rough extreme learning machine
تعداد نتایج: 842991 فیلتر نتایج به سال:
Extreme learning machine (ELM) is a new single hidden layer feedback neural network. The weights of the input layer and the biases of neurons in hidden layer are randomly generated; the weights of the output layer can be analytically determined. ELM has been achieved good results for a large number of classification tasks. In this paper, a new extreme learning machine called rough extreme learn...
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
introduction: manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. various data mining techniques exist for prediction of thermostable proteins. furthermore, ann methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate ...
برهم کنش های پروتئین-پروتئین در بسیاری از فرآیندهای سلولی نقش مهمی ایفا می کنند. بنابراین شناسایی، پیش بینی و تحلیل برهم کنش های پروتئین-پروتئین در حوزه زیست مولکولی مهم می باشد. روش های آزمایشگاهی که به این منظور طراحی گردیده اند بسیار پرهزینه، پر زحمت و وقت گیر می باشند. به همین دلیل نیاز به روش های محاسباتی برای بررسی برهم کنش های پروتئین-پروتئین روزانه افزایش می یابد. از این رو، هدف اصلی ا...
In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...
Slow speed of feedforward neural networks has been hampering their growth for past decades. Unlike traditional algorithms extreme learning machine (ELM) [5][6] for single hidden layer feedforward network (SLFN) chooses input weight and hidden biases randomly and determines the output weight through linear algebraic manipulations. We propose ELM as an auto associative neural network (AANN) and i...
The primitive Extreme Learning Machine (ELM) [1, 2, 3] with additive neurons and RBF kernels was implemented in batch mode. In this paper, its sequential modification based on recursive least-squares (RLS) algorithm, which referred as Online Sequential Extreme Learning Machine (OS-ELM), is introduced. Based on OS-ELM, Online Sequential Fuzzy Extreme Learning Machine (Fuzzy-ELM) is also introduc...
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
Data used in machine learning applications is prone to contain both vague and incomplete information. Many authors have proposed to use fuzzy rough set theory in the development of new techniques tackling these characteristics. Fuzzy sets deal with vague data, while rough sets allow to model incomplete information. As such, the hybrid setting of the two paradigms is an ideal candidate tool to c...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید