نتایج جستجو برای: roman game domination subdivision number

تعداد نتایج: 1281554  

Journal: :transactions on combinatorics 2013
jafar amjadi hossein karami seyed mahmoud sheikholeslami lutz volkmann

a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...

2013
J. AMJADI H. KARAMI S. M. SHEIKHOLESLAMI Hamid Reza Maimani J. Amjadi H. Karami S. M. Sheikholeslami

A Roman dominating function on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ∑ v∈V f(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on ...

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

2012
Abdollah Khodkar

A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...

2014
J. Amjadi

The rainbow game domination subdivision number of a graph G is defined by the following game. Two players D and A, D playing first, alternately mark or subdivide an edge of G which is not yet marked nor subdivided. The game ends when all the edges of G are marked or subdivided and results in a new graph G′. The purpose of D is to minimize the 2-rainbow dominating number γr2(G ′) of G′ while A t...

Journal: :communication in combinatorics and optimization 0
h. abdollahzadeh ahangar babol noshirvani university of technology s.r. mirmehdipour babol noshirvani university of technology

a {em roman dominating function} on a graph $g$ is a function$f:v(g)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}a {em restrained roman dominating}function} $f$ is a {color{blue} roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} the wei...

Journal: :communication in combinatorics and optimization 0
m. dettlaff gdańsk university of technology s. kosari azarbaijan shahid madani university m. lemańska gdańsk university of technology s.m. sheikholeslami azarbaijan shahid madani university

let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...

Journal: :communication in combinatorics and optimization 0
m. dettlaff gdańsk university of technology s. kosari azarbaijan shahid madani university m. lemańska gdańsk university of technology s.m. sheikholeslami azarbaijan shahid madani university

let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...

Journal: :bulletin of the iranian mathematical society 0
h. hosseinzadeh department of mathematics‎, ‎alzahra university‎, ‎p.o. box 19834, tehran‎, ‎iran. n. soltankhah department of mathematics‎, ‎alzahra university‎, ‎p.o. box 19834, tehran‎, ‎iran.

‎let $g=(v(g),e(g))$ be a graph‎, ‎$gamma_t(g)$. let $ooir(g)$ be the total domination and oo-irredundance number of $g$‎, ‎respectively‎. ‎a total dominating set $s$ of $g$ is called a $textit{total perfect code}$ if every vertex in $v(g)$ is adjacent to exactly one vertex of $s$‎. ‎in this paper‎, ‎we show that if $g$ has a total perfect code‎, ‎then $gamma_t(g)=ooir(g)$‎. ‎as a consequence, ...

Journal: :Discussiones Mathematicae Graph Theory 2002
Michael A. Henning

A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of f is w(f) = ∑ v∈V f(v). The Roman domination number is the minimum weight of an RDF in G. It is known that for every graph G, the Roman domination number of G is bounded above...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید