نتایج جستجو برای: ring of real valued continuous functions on a frame
تعداد نتایج: 23904219 فیلتر نتایج به سال:
let $l$ be a completely regular frame and $mathcal{r}l$ be the ringof continuous real-valued functions on $l$. we study the frame$mathfrak{o}(min(mathcal{r}l))$ of minimal prime ideals of$mathcal{r}l$ in relation to $beta l$. for $iinbeta l$, denoteby $textit{textbf{o}}^i$ the ideal${alphainmathcal{r}lmidcozalphain i}$ of $mathcal{r}l$. weshow that sending $i$ to the set of minimal prime ideals...
In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present t...
in this paper, we define and study the notion of the real-valued functions on a frame $l$. we show that $f(l) $, consisting of all frame homomorphisms from the power set of $mathbb{r}$ to a frame $ l$, is an $f$-ring, as a generalization of all functions from a set $x$ into $mathbb r$. also, we show that $f(l) $ is isomorphic to a sub-$f$-ring of $mathcal{r}(l)$, the ring of real-valued continu...
in this article, we have focused one some basic and productive information about the properties of spectrum and singular values related to compact operators which are ideals in a c*-algebra of bounded operators. considering a two-sided connection between the family of symmetric gauge functions on sequence of singular values of compact operators and symmetric norms on finite dimensional ope...
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in $L$. In this paper, we define and study the notions of a $tau $-real-continuous function on a frame $L$ and the set of real continuous functions $mathcal{R}L_tau $ as an $f$-ring. We show that $mathcal{R}L_{ tau}$ is actually a generali...
For any archimedean$f$-ring $A$ with unit in whichbreak$awedge (1-a)leq 0$ for all $ain A$, the following are shown to be equivalent: 1. $A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all integer-valued continuous functions on some frame $L$. 2. $A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$ of all integer-valued continuous functions, in the usual se...
a topoframe, denoted by $l_{ tau}$, is a pair $(l, tau)$ consisting of a frame $l$ and a subframe $ tau $ all of whose elements are complementary elements in$l$. in this paper, we define and study the notions of a$tau $-real-continuous function on a frame $l$ and the set of realcontinuous functions $mathcal{r}l_tau $ as an $f$-ring.we show that $mathcal{r}l_{ tau}$is actually a generalization ...
this paper is an attempt to generalize, simultaneously, the ring of real-valued continuous functions and the ring of real-valued measurable functions.
for any archimedean$f$-ring $a$ with unit in whichbreak$awedge(1-a)leq 0$ for all $ain a$, the following are shown to beequivalent:1. $a$ is isomorphic to the $l$-ring ${mathfrak z}l$ of allinteger-valued continuous functions on some frame $l$. 2. $a$ is a homomorphic image of the $l$-ring $c_{bbb z}(x)$of all integer-valued continuous functions, in the usual sense,on som...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید