نتایج جستجو برای: ricci parallel tensor
تعداد نتایج: 270534 فیلتر نتایج به سال:
a projective parameter of a geodesic as solution of certain ode is defined to be a parameter which is invariant under projective change of metric. using projective parameter and poincaré metric, an intrinsic projectively invariant pseudo-distance can be constructed. in the present work, solutions of the above ode are characterized with respect to the sign of parallel ricci tensor on a finsler s...
in this paper, the matsumoto metric with special ricci tensor has been investigated. it is proved that, if is ofpositive (negative) sectional curvature and f is of -parallel ricci curvature with constant killing 1-form ,then (m,f) is a riemannian einstein space. in fact, we generalize the riemannian result established by akbar-zadeh.
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
We study Ricci solitons in Lorentzian α-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a Lorentzian α-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if LV g + 2S is parallel, V is a given vector field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci solitons for (2n + 1)-dimensional Lor...
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
We study the ∗-Ricci operator on Hopf real hypersurfaces in complex quadric. prove that for quadric, tensor is symmetric if and only unit normal vector field singular. In following, we obtain of quadric symmetric, then both Reeb-flow-invariant Reeb-parallel. As correspondence to semi-symmetric Ricci tensor, give a classification with tensor.
Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...
The object of the present paper is to study three-dimensional Lorentzian -Sasakian manifolds which are Ricci-semisymmetry, locally symmetric and have -parallel Ricci tensor. An example of a three-dimensional Lorentzian -Sasakian manifold is given which verifies all the Theorems.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید