نتایج جستجو برای: regular element

تعداد نتایج: 322066  

Journal: :Proceedings of the American Mathematical Society 1998

Journal: :international journal of industrial mathematics 0
sh. a. safari ‎sabet‎ department of ‎mathematics,‎ central tehran branch, islamic azad university, tehran, ‎iran‎ m. farmani young researchers and elite club, roudehen branch, islamic azad university, roudehen, ‎iran

let $r$ be an associative ring with identity. an element $x in r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if there exist $g in g$, $n in mathbb{z}$ and $r in r$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). a ring $r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if every element of $r$ is $mathbb{z}g$-regular (resp. strongly $...

1996
Fred Richman

The property that an ideal whose annihilator is zero contains a regular element is examined from the point of view of constructive mathematics. It is shown that this property holds for nitely presented algebras over discrete elds, and for coherent, Noetherian, strongly discrete rings that contain an in nite eld. Let R be a commutative ring and M an R-module. For any subset I of R, we write AM(I...

Journal: :Canadian Mathematical Bulletin 2016

M. Farmani, SH. A. Safari ‎Sabet‎

Let $R$ be an associative ring with identity. An element $x in R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if there exist $g in G$, $n in mathbb{Z}$ and $r in R$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). A ring $R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if every element of $R$ is $mathbb{Z}G$-regular (resp. strongly $...

In this paper, we define hedge operation on a residuated skew lattice and investigate some its properties. We get relationships between some special sets as dense, nilpotent, idempotent, regular elements sets and their hedges.  By examples, we show that hedge of a dense element is not a dense and hedge of a regular element is not a regular. Also hedge of a nilpotent element is a nilpotent and h...

Let $R$ be an associative ring with unity. An element $x \in R$ is called $\mathbb{Z}G$-clean if $x=e+r$, where $e$ is an idempotent and $r$ is a $\mathbb{Z}G$-regular element in $R$. A ring $R$ is called $\mathbb{Z}G$-clean if every element of $R$ is $\mathbb{Z}G$-clean. In this paper, we show that in an abelian $\mathbb{Z}G$-regular ring $R$, the $Nil(R)$ is a two-sided ideal of $R$ and $\fra...

Journal: :bulletin of the iranian mathematical society 0
n. ashrafi semnan universityfaculty of mathematics, statistics and computer science, semnan university, semnan, iran. n. pouyan faculty of mathematics, statistics and computer science, semnan university, semnan, iran.

in this paper we prove that each element of any regular baer ring is a sum of two units if no factor ring of r is isomorphic to z_2 and we characterize regular baer rings with unit sum numbers $omega$ and $infty$. then as an application, we discuss the unit sum number of some classes of group rings.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید