نتایج جستجو برای: recurrent input

تعداد نتایج: 345825  

Journal: :iranian journal of science and technology (sciences) 2007
v. saglam

the probability of losing a customer in m/g/n/0 and gi/m/n/0 loss queuing systems withheterogeneous servers is minimized. the first system uses a queue discipline in which a customer who arriveswhen there are free servers chooses any one of them with equal probability, but is lost otherwise. providedthat the sum of the servers rates are fixed, loss probability in this system attains minimum val...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - پژوهشکده ریاضیات 1392

this is xetex, version 3.1415926-2.2-0.9995.1 (miktex 2.8) (preloaded format=xelatex 2012.4.3) 11 nov 2012 22:12 entering extended mode **template_2.tex ("c:userszahradesktopxepersian file - copy emplate_2.tex" latex2e <2009/09/24> babel and hyphenation patterns for english, dumylang, nohyphenation, ge rman, ngerman, german-x-2009-06-19, ngerman-x-2009-06-19, french, loaded. ("c:...

Journal: :journal of computer and robotics 0
mohammad talebi motlagh department of systems and control, industrial control center of excellence, k.n.toosi university of technology, tehran, iran hamid khaloozadeh department of systems and control, industrial control center of excellence, k.n.toosi university of technology, tehran, iran

modelling and forecasting stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. this nonlinearity affects the efficiency of the price characteristics. using an artificial neural network (ann) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

Hamid Khaloozadeh Mohammad Talebi Motlagh

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

1999
Jochen J. Steil

i Foreword Recurrent neural networks are an attractive tool for both practical applications and for the modeling of biological nerve nets, but their successful application requires an understanding of their dynamical properties, in particular, their stability. The present work provides an in-depth study of this challenging issue and contributes a number of new results that are also important fo...

1998
Jochen J. Steil

We present a frequency domain analysis of additive recurrent neural networks based on the pas-sivity approach to input-output stability. We apply graphical Circle Criteria for the case of normal weight matrices which result in eeectively computable stability bounds, including systems with delay. Approximation techniques yield further gen-eralisation to arbitrary matrices.

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد گرمسار - دانشکده علوم انسانی 1391

the present study was conducted to investigate the effect of implicit focus on form through input flooding and the effect of noticing, explicit focus on form on linguistic accuracy. to fulfill the purpose of the study, 86 iranian pre-intermediate efl learners of one of the language institutes were chosen by means of administering ket as the homogeneity test. these learners were pretested throug...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ادبیات و زبانهای خارجی 1392

هدف از انجام تحقیق .بر اساس یافته ها تاکنون میزان تاثیراین تکنیکها در مقایسه با سایر روشها براساس اطلاعات آماری و به صورت عددو رقم بررسی و نمایش داده نشده اند و به همین دلیل این رویکرد نتوانسته توجه اساتید و مربیان آموزش زبان را در کشورمان به خود جلب کند. از اینرودر این پژوهش بر آن شدیم تا میزان تاثیر تکنیکهای معرفی شده در این رویکرد را با انجام یک تحقیق آزمایشی بر روی سه گروه از دانشجویان برر...

1997
Markus Varsta José del R. Millán Jukka Heikkonen

We present a novel approach to unsupervised temporal sequence processing in the form of an unsupervised, recurrent neural network based on a selforganizing map (SOM). A standard SOM clusters each input vector irrespective of context, whereas the recurrent SOM presented here clusters each input based on an input vector and a context vector. The latter acts as a recurrent conduit feeding back a 2...

Journal: :CoRR 2017
Matiss Rikters Mark Fishel

Attention distributions of the generated translations are a useful bi-product of attention-based recurrent neural network translation models and can be treated as soft alignments between the input and output tokens. In this work, we use attention distributions as a confidence metric for output translations. We present two strategies of using the attention distributions: filtering out bad transl...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید