نتایج جستجو برای: rbf kernel function

تعداد نتایج: 1254130  

Journal: :journal of agricultural science and technology 2015
f. javadi m. m. ahmadi k. qaderi

movement of sediment in the river causes many changes in the river bed. these changes are called bedform. river bedform has significant and direct effects on bed roughness, flow resistance, and water surface profile. thus, having adequate knowledge of the bedform is of special importance in river engineering. several methods have been developed by researchers for estimation of bed form dimensio...

2013
Mounira TARHOUNI Salah ZIDI Kaouther LAABIDI Moufida KSOURI-LAHMARI

This paper deals with the identification of nonlinear systems using multi-kernel approach. In this context, we have improved the Support Vector Regression (SVR) method in order to identify nonlinear complex system. Our idea consists in dividing the regressor vector in several blocks, and, for each one a kernel function is used. This blockwise SVR approach is called Support Kernel Regression (SK...

Journal: :Journal of Nonparametric Statistics 2023

The Gaussian radial basis function (RBF) is a widely used kernel in kernel-based methods. parameter RBF, referred to as the shape parameter, plays an essential role model fitting. In this paper, we propose method select parameters for general RBF kernel. It can simultaneously serve variable selection and regression estimation. For former, asymptotic consistency established; latter, estimation e...

Journal: :JCS 2017
Avinanta Tarigan Dewi Agushinta R. Adang Suhendra Fikri Budiman

Corresponding Author: Fikri Budiman Department of Computer Science, University of Dian Nuswantoro, Semarang, Indonesia Email: [email protected] Abstract: Image retrieval using Support Vector Machine (SVM) classification very depends on kernel function and parameter. Kernel function used by dot product substitution from old dimension feature to new dimension depends on image dataset ...

In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...

2011
Kemal Uçak Gülay Öke Günel

In this paper, the effects of using multi RBF kernel for an online LSSVR on modeling and control performance are investigated. The Jacobian information of the system is estimated via online LSSVR model. Kernel parameter determines how the measured input is mapped to the feature space and a better plant model can be achieved by discarding redundant features. Therefore, introducing flexibility in...

2006
Petra Kudová

In this work we study and develop learning algorithms for networks based on regularization theory. In particular, we focus on learning possibilities for a family of regularization networks and radial basis function networks (RBF networks). The framework above the basic algorithm derived from theory is designed. It includes an estimation of a regularization parameter and a kernel function by min...

2009
E. A. Zanaty Sultan Hamadi Aljahdali R. J. Cripps

In this paper, a new kernel function is introduced that improves the classification accuracy of support vector machines (SVMs) for both linear and non-linear data sets. The proposed kernel function, called Gauss radial basis polynomial function (RBPF) combine both Gauss radial basis function (RBF) and polynomial (POLY) kernels. It is shown that the proposed kernel converges faster than the RBF ...

2014
Kumari Jyotsna Nidhi Chaubey Udayan Baruah

AbstractThis paper describes an experiment on face recognition using a simple feature vector and Support Vector Machine (SVM) classifier. Polynomial and Radial Basis Function (RBF) kernels of SVM are used for classification. The dataset in this experiment consists of a set of images of eight different faces (eight classes) containing ten different images for a single class. The experiment is pe...

Journal: :CoRR 2016
Ping Li

The GMM (generalized min-max) kernel was recently proposed [5] as a measure of data similarity and was demonstrated effective in machine learning tasks. In order to use the GMM kernel for large-scale datasets, the prior work resorted to the (generalized) consistent weighted sampling (GCWS) to convert the GMM kernel to linear kernel. We call this approach as “GMM-GCWS”. In the machine learning l...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید