نتایج جستجو برای: rank linear transformation
تعداد نتایج: 750745 فیلتر نتایج به سال:
The paper is concerned with a generalization of concepts introduced in [13], i.e. introduced are matrices of linear transformations over a finitedimensional vector space. Introduced are linear transformations over a finitedimensional vector space depending on a given matrix of the transformation. Finally, I prove that the rank of linear transformations over a finite-dimensional vector space is ...
Low-rank matrix recovery (LMR) is a rank minimization problem subject to linear equality constraints, and it arises in many fields such as signal and image processing, statistics, computer vision, system identification and control. This class of optimization problems is generally NP-hard. A popular approach replaces the rank function with the nuclear norm of the matrix variable. In this paper, ...
We propose a low-rank transformation-learning framework to robustify subspace clustering. Many high-dimensional data, such as face images and motion sequences, lie in a union of low-dimensional subspaces. The subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to their underlying low-dimensional subspaces....
the triple factorization of a group $g$ has been studied recently showing that $g=aba$ for some proper subgroups $a$ and $b$ of $g$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. in this paper we study two infinite classes of non-abelian finite groups $d_{2n}$ and $psl(2,2^{n})$...
abstract: in this thesis, we focus to class of convex optimization problem whose objective function is given as a linear function and a convex function of a linear transformation of the decision variables and whose feasible region is a polytope. we show that there exists an optimal solution to this class of problems on a face of the constraint polytope of feasible region. based on this, we dev...
The low-rank matrix recovery (LMR) is a rank minimization problem subject to linear equality constraints, and it arises in many fields such as signal and image processing, statistics, computer vision, system identification and control. This class of optimization problems is NP-hard and a popular approach replaces the rank function with the nuclear norm of the matrix variable. In this paper, we ...
in this paper, we study the extremal ranks and inertias of the hermitian matrix expression $$ f(x,y)=c_{4}-b_{4}y-(b_{4}y)^{*}-a_{4}xa_{4}^{*},$$ where $c_{4}$ is hermitian, $*$ denotes the conjugate transpose, $x$ and $y$ satisfy the following consistent system of matrix equations $a_{3}y=c_{3}, a_{1}x=c_{1},xb_{1}=d_{1},a_{2}xa_{2}^{*}=c_{2},x=x^{*}.$ as consequences, we g...
A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to...
This work introduces a transformation-based learner model for classification forests. The weak learner at each split node plays a crucial role in a classification tree. We propose to optimize the splitting objective by learning a linear transformation on subspaces using nuclear norm as the optimization criteria. The learned linear transformation restores a low-rank structure for data from the s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید