نتایج جستجو برای: product simpson integration method
تعداد نتایج: 2051839 فیلتر نتایج به سال:
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
fuzzy newton-cotes method for integration of fuzzy functions that was proposed by ahmady in [1]. in this paper we construct error estimate of fuzzy newton-cotes method such as fuzzy trapezoidal rule and fuzzy simpson rule by using taylor's series. the corresponding error terms are proven by two theorems. we prove that the fuzzy trapezoidal rule is accurate for fuzzy polynomial of degree one and...
Fuzzy Newton-Cotes method for integration of fuzzy functions that was proposed by Ahmady in [1]. In this paper we construct error estimate of fuzzy Newton-Cotes method such as fuzzy Trapezoidal rule and fuzzy Simpson rule by using Taylor's series. The corresponding error terms are proven by two theorems. We prove that the fuzzy Trapezoidal rule is accurate for fuzzy polynomial of degree one and...
in this paper, we studied the numerical solution of nonlinear weakly singular volterra-fredholm integral equations by using the product integration method. also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear volterra-fredholm integral equations. the reliability and efficiency of the proposed scheme are...
In this paper, a numerical method for integration of fuzzy functions is considered. Fuzzy Newton-Cotes formula, such as fuzzy trapezoidal method and fuzzy Simpson method are calculated by integration of fuzzy functions on two and three equally space points. Also the composite fuzzy trapezoidal and composite fuzzy Simpson method are proposed for n equally space points. The proposed method are il...
Abstract: The classical Simpson rule is an optimal fourth order two-step integration scheme for first-order initial-value problems; however, it is unconditionally unstable. An A-stabilized version of Simpson rule was given by Chawla et al [3] and an L-stable version was given by Chawla et al [2]. These rules are functionally implicit, and when applied for the time integration of nonlinear diffe...
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
Methods of numerical integration of sampled data are compared in terms of their frequency responses and resolving power. Compared, theoretically and by numerical experiments, are trapezoidal, Simpson, Simpson-3/8 methods, method based on cubic spline data interpolation and Discrete Fourier Transform (DFT) based method. Boundary effects associated with DFT- based and spline-based methods are inv...
we reduce the two phase stefan problem with kinetic to a system of nonlinear volterra integral equations of second kind and apply newton's method to linearize it. we found product integration solution of the linear form. sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.
stefan problem with kinetics is reduced to a system of nonlinear volterra integral equations of second kind and newton's method is applied to linearize it. product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. an example is provided to illustrated the applicability of the method.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید