نتایج جستجو برای: prime graph conjecture
تعداد نتایج: 268148 فیلتر نتایج به سال:
we investigate the classical h.~zassenhaus conjecture for integral group rings of alternating groups $a_9$ and $a_{10}$ of degree $9$ and $10$, respectively. as a consequence of our previous results we confirm the prime graph conjecture for integral group rings of $a_n$ for all $n leq 10$.
Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...
in this paper, we investigate the zassenhaus conjecture for $psl(4,3)$ and $psl(5,2)$. consequently, we prove that the prime graph question is true for both groups.
vasil'ev posed problem 16.26 in [the kourovka notebook: unsolved problems in group theory, 16th ed.,sobolev inst. math., novosibirsk (2006).] as follows:does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? conjecture: $k = 5$.in [zvezdina, on nonabelian simple groups having the same prime gr...
There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...
there are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{z}_{2}$ or $mathbb{z}_{15}$. still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of sylow $p$-subgroups for each prime $p$, etc. in this...
let $g$ be a finite group and let $gk(g)$ be the prime graph of $g$. we assume that $ngeqslant 5 $ is an odd number. in this paper, we show that the simple groups $b_n(3)$ and $c_n(3)$ are 2-recognizable by their prime graphs. as consequences of the result, the characterizability of the groups $b_n(3)$ and $c_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are obtai...
Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
Let G be a finite group and let $GK(G)$ be the prime graph of G. We assume that $n$ is an odd number. In this paper, we show that if $GK(G)=GK(B_n(p))$, where $ngeq 9$ and $pin {3,5,7}$, then G has a unique nonabelian composition factor isomorphic to $B_n(p)$ or $C_n(p)$ . As consequences of our result, $B_n(p)$ is quasirecognizable by its spectrum and also by a new proof, the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید