نتایج جستجو برای: polymeric piezoelectric nanoplate
تعداد نتایج: 37955 فیلتر نتایج به سال:
In this article, the nonlocal biaxial buckling load and bending analysis of polymeric piezoelectric nanoplate reinforced by carbon nanotube (CNT) considering the surface stress effect is presented. This plate is subjected to electro-magneto-mechanical loadings. Eshelby-Mori-Tanaka approach is used for defining the piezoelectric nanoplate material properties. Navier’s type solution is employed t...
Ultrathin plasmonic metasurfaces have proven their ability to control and manipulate light at unprecedented levels, leading to exciting optical functionalities and applications. Although to date metasurfaces have mainly been investigated from an electromagnetic perspective, their ultrathin nature may also provide novel and useful mechanical properties. Here we propose a thin piezoelectric plasm...
In this paper, the pull-in instability of piezoelectric polymeric nanocomposite plates reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) based on modified strain gradient theory (MSGT) is investigated. Various types of SWCNTs are distributed in piezoelectric polymeric plate and also surface stress effect is considered in this research. The piezoelectric polymeric nano...
In the present work, thermo-electro vibration of the piezoelectric nanoplates resting on the elastic foundations using nonlocal elasticity theory are considered. In-plane and transverse displacements of the nanoplate have been approximated by six different modified shear deformation plate theories considering transverse shear deformation effects and rotary inertia. Moreover, two new distributio...
Flexible piezoelectric devices made of polymeric materials are widely used for microand nanoelectro-mechanical systems. In particular, numerous recent applications concern energy harvesting. Due to the importance of computational modeling to understand the influence that microscale geometry and constitutive variables exert on the macroscopic behavior, a numerical approach is developed here for ...
A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stresshtrain...
magnetic field effects on the elastic response of polymeric piezoelectric cylinder reinforced with carbon nanotubes (cnts) is studied. the cylinder is subjected to internal pressure, a constant electric potential difference at the inner and outer surfaces, thermal and magnetic fields. the mori-tanaka model is used for obtaining the equivalent material properties of the cylinder. based on the ch...
using principle of minimum total potential energy approach in conjunction with rayleigh-ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (dwbnnt) is investigated. coupling between electrical and mechanical fields are considered according to a re...
In the present study, the magnetic field effects of the elastic response of the polymeric piezoelectric cylinder reinforced with the carbon nanotubes (CNTs) are studied. The cylinder is subjected to an internal pressure, a constant electric potential difference at the inner and outer surfaces, and the thermal and magnetic fields. The Mori-Tanaka model is used for obtaining the equivalent materi...
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo- mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید