نتایج جستجو برای: perron frobenius theorem

تعداد نتایج: 148652  

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.

Journal: :Proceedings of the American Mathematical Society 1990

Journal: :Michigan Mathematical Journal 1957

Journal: :journal of mahani mathematical research center 0
mostafa zangiabadi department of mathematics, hormozgan university, p. o. box 3995, bandar abbas, iran hamid reza afshin department of mathematics, vali-e-asr university of rafsanjan, p. o. box 518, rafsanjan, iran

we give further results for perron-frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. we indicate two techniques for establishing the main theorem ofperron and frobenius on the numerical range. in the rst method, we use acorresponding version of wielandt's lemma. the second technique involves graphtheory.

2014
Guillaume Cano

In this thesis we present the formalization of three principal results that are the Jordan normal form of a matrices, the Bolzano-Weierstraß theorem, and the Perron-Frobenius theorem. To formalize the Jordan normal form, we introduce many concepts of linear algebra like block diagonal matrices, companion matrices, invariant factors, ... The formalization of Bolzano-Weierstraß theorem needs to d...

2006
I. V. EVSTIGNEEV

We establish a stochastic nonlinear analogue of the PerronFrobenius theorem on eigenvalues and eigenvectors of positive matrices. The result is formulated in terms of an automorphism T of a probability space (Ω,F , P ) and a random mapping D(ω, ·) : R+ → R+. Under assumptions of monotonicity and homogeneity of D(ω, ·), we prove the existence of scalar and vector measurable functions α(ω) > 0 an...

2004
Panayiotis J. Psarrakos Michael J. Tsatsomeros

We present an extension of Perron–Frobenius theory to the spectra and numerical ranges of Perron polynomials, namely, matrix polynomials of the form L(λ) = Iλ − Am−1λm−1 − · · · − A1λ− A0, where the coefficient matrices are entrywise nonnegative. Our approach relies on the companion matrix linearization. First, we recount the generalization of the Perron–Frobenius Theorem to Perron polynomials ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید