نتایج جستجو برای: permutable subgroup
تعداد نتایج: 86199 فیلتر نتایج به سال:
suppose that $h$ is a subgroup of $g$, then $h$ is said to be $s$-permutable in $g$, if $h$ permutes with every sylow subgroup of $g$. if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|, |h|)=1$), then $h$ is called an $s$-semipermutable subgroup of $g$. in this paper, we say that $h$ is partially $s$-embedded in $g$ if $g$ has a normal subgroup $t$ such that $ht...
suppose that $h$ is a subgroup of $g$, then $h$ is said to be $s$-permutable in $g$, if $h$ permutes with every sylow subgroup of $g$. if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|, |h|)=1$), then $h$ is called an $s$-semipermutable subgroup of $g$. in this paper, we say that $h$ is partially $s$-embedded in $g$ if $g$ has a normal subgroup $t$ such that $ht...
a subgroup $h$ is said to be $s$-permutable in a group $g$, if $hp=ph$ holds for every sylow subgroup $p$ of $g$. if there exists a subgroup $b$ of $g$ such that $hb=g$ and $h$ permutes with every sylow subgroup of $b$, then $h$ is said to be $ss$-quasinormal in $g$. in this paper, we say that $h$ is a weakly $ss$-quasinormal subgroup of $g$, if there is a normal subgroup ...
A subgroup H of a finite group G is said to be W -S-permutable in G if there is a subgroup K of G such that G = HK and H ∩K is a nearly S-permutable subgroup of G. In this article, we analyse the structure of a finite group G by using the properties of W -S-permutable subgroups and obtain some new characterizations of finite p-nilpotent groups and finite supersolvable groups. Some known results...
Y. Li gave a characterization of the class of finite soluble groups in which every subnormal subgroup is normal by means of NE -subgroups: a subgroup H of a group G is called an NE -subgroup of G if NG(H) ∩ H = H. We obtain a new characterization of these groups related to the local Wielandt subgroup. We also give characterizations of the classes of finite soluble groups in which every subnorma...
a subgroup $h$ is said to be $s$-permutable in a group $g$, if $hp=ph$ holds for every sylow subgroup $p$ of $g$. if there exists a subgroup $b$ of $g$ such that $hb=g$ and $h$ permutes with every sylow subgroup of $b$, then $h$ is said to be $ss$-quasinormal in $g$. in this paper, we say that $h$ is a weakly $ss$-quasinormal subgroup of $g$, if there is a normal subgroup ...
in this paper, we consider locally graded groups in which every non-permutable subgroup is soluble of bounded derived length.
A subgroup H of a group G is called ss-quasinormal in G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B; H is called weakly s-permutable in G if there is a subnormal subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We fix in every non-cyclic Sylow subgr...
Let H be a subgroup of a group G. H is said to be S-embedded in G if G has a normal T such that HT is an S-permutable subgroup of G and H ∩ T ≤ H sG, where H denotes the subgroup generated by all those subgroups of H which are S-permutable in G. In this paper, we investigate the influence of minimal S-embedded subgroups on the structure of finite groups. We determine the structure the finite grou...
we call $h$ an $ss$-embedded subgroup of $g$ if there exists a normal subgroup $t$ of $g$ such that $ht$ is subnormal in $g$ and $hcap tleq h_{sg}$, where $h_{sg}$ is the maximal $s$-permutable subgroup of $g$ contained in $h$. in this paper, we investigate the influence of some $ss$-embedded subgroups on the structure of a finite group $g$. some new results were obtained.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید