نتایج جستجو برای: nzvi

تعداد نتایج: 362  

Journal: :Journal of contaminant hydrology 2013
Chris M Kocur Denis M O'Carroll Brent E Sleep

Nano-scale zero valent iron (nZVI) has received significant attention because of its potential to rapidly reduce a number of priority source zone contaminants. In order to effectively deliver nZVI to the source zone the nZVI particles must be stable. Previous laboratory studies have demonstrated the mobility of polymer modified suspensions of low concentration nZVI. More recently studies have s...

Journal: :Water research 2015
Sai Rajasekar C Rajajayavel Subhasis Ghoshal

Direct injection of reactive nanoscale zerovalent iron particles (NZVI) is considered to be a promising approach for remediation of aquifers contaminated by chlorinated organic pollutants. In this study we show that the extent of sulfidation of NZVI enhances the rate of dechlorination of trichloroethylene (TCE) compared to that by unamended NZVI, and the enhancement depends on the Fe/S molar ra...

Journal: :Chemosphere 2016
Krittanut Chaithawiwat Alisa Vangnai John M McEvoy Birgit Pruess Sita Krajangpan Eakalak Khan

The toxic effect of nanoscale zero valent iron (nZVI) particles on bacteria from different growth phases was studied. Four bacterial strains namely Escherichia coli strains JM109 and BW25113, and Pseudomonas putida strains KT2440 and F1 were experimented. The growth curves of these strains were determined. Bacterial cells were harvested based on the predetermined time points, and exposed to nZV...

2017
D Ribas M Černík J Benito J. Filip V Marti

Nanoscale Zero Valent Iron (nZVI) represents a promising material for subsurface water remediation technology. However, dry, bare nZVI particles are highly reactive, being pyrophoric when they are in contact with air. The current trends of nZVI manufacturing lead to the surface passivation of dry nZVI particles with a thin oxide layer, which entails a decrease in their reactivity. In this work ...

2015
Lu Han Song Xue Shichen Zhao Jingchun Yan Linbo Qian Mengfang Chen Maosheng Yao

The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on t...

2014
Elham Barzan Sedigheh Mehrabian Saeed Irian

BACKGROUND In a world of nanotechnology, the first concern is the potential environmental impact of nanoparticles. An efficient way to estimate nanotoxicity is to monitor the responses of bacteria exposed to these particles. OBJECTIVES The current study explored the antimicrobial properties of nZVI (zero-valent Iron nanoparticles) on the Gram-negative bacterial systems Erwinia amylovora, Xant...

2015
Xuan Li Yuechao Yang Bin Gao Min Zhang

Because of its strong pollutant degradation ability, nanoscale zerovalent iron (NZVI) has been introduced to soils and groundwater for remediation purposes, but its impacts on plants are still not very clear. In this work, the effects of low concentration (10-320 μmol/L) NZVI particles on seed germination and growth of peanut plants were evaluated. The exposure of peanut seeds to NZVI at all th...

Journal: :Environmental science & technology 2009
Kevin M Sirk Navid B Saleh Tanapon Phenrat Hye-Jin Kim Bruno Dufour Ok Jeongbin Patricia L Golas Krzysztof Matyjaszewski Gregory V Lowry Robert D Tilton

Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with thr...

2014
Richard A. Crane Thomas Scott

In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their...

2013
Seol Ah Kim Patrick J. Shea Wang-Hyu Lee Byung-Taek Oh

The effectiveness of nanoscale zero-valent iron (nZVI) to remove heavy metals from water is reduced by its low durability, poor mechanical strength, and tendency to form aggregates. A composite of zeolite and nanoscale zero-valent iron (Z–nZVI) overcomes these problems and shows good potential to remove Pb from water. FTIR spectra support nZVI loading onto the zeolite and reduced Fe0 oxidation ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید