نتایج جستجو برای: non selfadjoint differential operators
تعداد نتایج: 1649292 فیلتر نتایج به سال:
on utilizing the spectral representation of selfadjoint operators in hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in hilbert spaces via a taylor's type expansion are given.
on utilizing the spectral representation of selfadjoint operators in hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in hilbert spaces via a taylor's type expansion are given.
We study the structure of the Fuč́ık spectra for the linear multipoint differential operators. We introduce a variational approach in order to obtain a robust and global algorithm which is suitable for the exploration of unknown Fuč́ık spectrum structure. We apply our approach in the case of the four-point selfadjoint differential operator of the fourth order which is closely connected to the non...
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
Motivated by the problem of analytic hypoellipticity, we show that a special family of compact non selfadjoint operators has a non zero eigenvalue. We recover old results obtained by ordinary differential equations techniques and show how it can be applied to the higher dimensional case. This gives in particular a new class of hypoelliptic, but not analytic hypoelliptic operators.
Consider a selfadjoint unbounded operator D on a Hilbert space H and a one parameter norm continuous family of selfadjoint bounded operators {A(t) | t ∈ R} that converges in norm to asymptotes A± at ±∞. Then under certain conditions [RoSa95] that include the assumption that the operators {D(t) = D + A(t), t ∈ R} all have discrete spectrum then the spectral flow along the path {D(t)} can be show...
Hill’s method is a means to numerically approximate spectra of linear differential operators with periodic coefficients. In this paper, we address different issues related to the convergence of Hill’s method. We show the method does not produce any spurious approximations, and that for selfadjoint operators, the method converges in a restricted sense. Furthermore, assuming convergence of an eig...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید