نتایج جستجو برای: nilradical
تعداد نتایج: 94 فیلتر نتایج به سال:
We classify solvable Lie groups with a free nilradical admitting an Einstein left-invariant metric. Any such group is essentially determined by the nilradical of its Lie algebra, which is then called an Einstein nilradical. We show that among the free Lie algebras, there are very few Einstein nilradicals. Except for the one-step (abelian) and the two-step ones, there are only six (here f(m, p) ...
We classify solvable Lie groups with a free nilradical admitting an Einstein left-invariant metric. Any such group is essentially determined by the nilradical of its Lie algebra, which is then called an Einstein nilradical. We show that among the free Lie algebras, there are very few Einstein nilradicals. Except for the one-step (abelian) and the two-step ones, there are only six (here f(m, p) ...
We classify solvable Lie groups with free nilradical admitting an Einstein left-invariant metric. Any such group is essentially determined by the nilradical of its Lie algebra, which is then called an Einstein nilradical. We show that among the free Lie algebras, there are very few Einstein nilradicals. Except for the one-step (abelian) and the two-step ones, there are only six others: (here f(...
An Einstein nilradical is a nilpotent Lie algebra, which can be the nilradical of a metric Einstein solvable Lie algebra. The classification of Riemannian Einstein solvmanifolds (possibly, of all noncompact homogeneous Einstein spaces) can be reduced to determining, which nilpotent Lie algebras are Einstein nilradicals and to finding, for every Einstein nilradical, its Einstein metric solvable ...
We give a new characterization of the bounded nilradical. Using the interplay between this and previous characterizations, we prove that the bounded nilradical is a graded ideal if the ring is graded. This allows us to completely determine the bounded nilradical of skew polynomial and skew Laurent polynomial rings in terms of information in the coefficient ring.
This article is part of a study on solvable Leibniz algebras with given nilradical. In this paper, algebras, whose nilradical naturally graded quasi-filiform algebra and the complemented space to has maximal dimension, are described up isomorphism.
A Riemannian Einstein solvmanifold (possibly, any noncompact homogeneous Einstein space) is almost completely determined by the nilradical of its Lie algebra. A nilpotent Lie algebra, which can serve as the nilradical of an Einstein metric solvable Lie algebra, is called an Einstein nilradical. Despite a substantial progress towards the understanding of Einstein nilradicals, there is still a la...
We finish the determination of the invariants of the coadjoint representation of six dimensional real Lie algebras, by determining a fundamental set of invariants for the 99 isomorphism classes of solvable Lie algebras with five dimensional nilradical. We also give some results on the invariants of solvable Lie algebras in arbitrary dimension whose nilradical has codimension one.
For p an odd prime, the cohomology ring of the extraspecial p-group of order p5 and exponent p is investigated. A presentation is obtained for the subquotient generated by Chern classes, modulo nilradical. Moreover, it is proved that, for every extraspecial p-group of exponent p, the top Chern classes of the irreducible representations do not generate the Chern subring modulo nilradical. Finall...
The structure of a solvable Lie groups admitting an Einstein left-invariant metric is, in a sense, completely determined by the nilradical of its Lie algebra. We give an easy-to-check necessary and sufficient condition for a nilpotent algebra to be an Einstein nilradical whose Einstein derivation has simple eigenvalues. As an application, we classify filiform Einstein nilradicals (modulo known ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید