نتایج جستجو برای: nilpotent graph
تعداد نتایج: 202518 فیلتر نتایج به سال:
the zero-divisor graph of a commutative ring r with respect to nilpotent elements is a simple undirected graph $gamma_n^*(r)$ with vertex set z_n(r)*, and two vertices x and y are adjacent if and only if xy is nilpotent and xy is nonzero, where z_n(r)={x in r: xy is nilpotent, for some y in r^*}. in this paper, we investigate the basic properties of $gamma_n^*(r)$. we discuss when it will be eu...
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
let $r$ be a ring with unity. the undirected nilpotent graph of $r$, denoted by $gamma_n(r)$, is a graph with vertex set ~$z_n(r)^* = {0neq x in r | xy in n(r) for some y in r^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in n(r)$, or equivalently, $yx in n(r)$, where $n(r)$ denoted the nilpotent elements of $r$. recently, it has been proved that if $r$ is a left ar...
the non commuting graph of a non-abelian finite group $g$ is defined as follows: its vertex set is $g-z(g)$ and two distinct vertices $x$ and $y$ are joined by an edge if and only if the commutator of $x$ and $y$ is not the identity. in this paper we prove some new results about this graph. in particular we will give a new proof of theorem 3.24 of [2]. we also prove that if $g_1$, $g_2$, ..., $...
We associate a graph NG with a group G (called the non-nilpotent graph of G) as follows: take G as the vertex set and two vertices are adjacent if they generate a non-nilpotent subgroup. In this paper we study the graph theoretical properties of NG and its induced subgraph on G\nil(G), where nil(G) = {x ∈ G | 〈x, y〉 is nilpotent for all y ∈ G}. For any finite group G, we prove that NG has eithe...
We reduce the graph isomorphism problem to 2-nilpotent p-groups isomorphism problem (and to finite 2-nilpotent Lie algebras the ring Z/pZ. Furthermore, we show that classifying problems in categories graphs, finite 2-nilpotent p-groups, and 2-nilpotent Lie algebras over Z/pZ are polynomially equivalent and wild.
Let R be a commutative ring with identity and Nil(R) be the set of nilpotent elements of R. The nil-graph of ideals of R is defined as the graph AG_N(R) whose vertex set is {I:(0)and there exists a non-trivial ideal such that and two distinct vertices and are adjacent if and only if . Here, we study conditions under which is complete or bipartite. Also, the independence number of is deter...
We associate with each graph (S, E) a 2-step simply connected nilpotent Lie group N and a lattice Γ in N . We determine the group of Lie automorphisms of N and apply the result to describe a necessary and sufficient condition, in terms of the graph, for the compact nilmanifold N/Γ to admit an Anosov automorphism. Using the criterion we obtain new examples of compact nilmanifolds admitting Anoso...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید