نتایج جستجو برای: net regular signed graph
تعداد نتایج: 418349 فیلتر نتایج به سال:
A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...
A graph whose edges are labeled either as positive or negative is called a signed graph. A signed graph is said to be net-regular if every vertex has constant net-degree k, namely, the difference between the number of positive and negative edges incident with a vertex. In this paper, we analyze some properties of co-regular signed graphs which are net-regular signed graphs with the underlying g...
A signed graph is called net regular if the sum of the signs of every edge incident to each vertex is constant. Graphs that admit a signing making them net regular are called net regularizable. In this paper, net regular signed trees are studied, including general properties, conditions for a tree to be net regularizable, and generating functions.
A graph whose edges are labeled either as positive or negative is called a signed graph. In this article, we extend the notion of composition of (unsigned) graphs (also called lexicographic product) to signed graphs. We employ Kronecker product of matrices to express the adjacency matrix of this product of two signed graphs and hence find its eigenvalues when the second graph under composition ...
a emph{signed graph} (or, in short, emph{sigraph}) $s=(s^u,sigma)$ consists of an underlying graph $s^u :=g=(v,e)$ and a function $sigma:e(s^u)longrightarrow {+,-}$, called the signature of $s$. a emph{marking} of $s$ is a function $mu:v(s)longrightarrow {+,-}$. the emph{canonical marking} of a signed graph $s$, denoted $mu_sigma$, is given as $$mu_sigma(v) := prod_{vwin e(s)}sigma(vw).$$the li...
in this paper, we define the common minimal dominating signed graph of a given signed graph and offer a structural characterization of common minimal dominating signed graphs. in the sequel, we also obtained switching equivalence characterizations: $overline{s} sim cmd(s)$ and $cmd(s) sim n(s)$, where $overline{s}$, $cmd(s)$ and $n(s)$ are complementary signed gra...
A connected signed graph Ġ, where all blocks of it are positive cliques or negative (of possibly varying sizes), is called a block graph. Let A, N and D̃ be adjacency, net Laplacian distance matrices graph, respectively. In this paper the formulas for determinant were given firstly. Then inverse (resp. Moore-Penrose inverse) obtained if nonsingular singular), which sum Laplacian-like matrix at m...
The key to Seymour’s Regular Matroid Decomposition Theorem is his result that each 3-connected regular matroid with no R10or R12-minor is graphic or cographic. We present a proof of this in terms of signed graphs. 2004 Wiley Periodicals, Inc. J Graph Theory 48: 74–84, 2005
This report briefly describes the development and applications of net-sign graph theory. The current work enunciates the graph (molecule) signature of nonalternant non-benzenoid hydrocarbons with odd member of rings (non-bipartite molecular graphs) based on chemical signed graph theory. Experimental evidences and Hückel spectrum reveal that structure possessing nonbonding molecular orbital (NBM...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید