نتایج جستجو برای: modular chromatic index

تعداد نتایج: 451777  

Journal: :transactions on combinatorics 2015
n. paramaguru r. sampathkumar

let $g$ be a connected graph of order $3$ or more and $c:e(g)rightarrowmathbb{z}_k$‎ ‎($kge 2$) a $k$-edge coloring of $g$ where adjacent edges may be colored the same‎. ‎the color sum $s(v)$ of a vertex $v$ of $g$ is the sum in $mathbb{z}_k$ of the colors of the edges incident with $v.$ the $k$-edge coloring $c$ is a modular $k$-edge coloring of $g$ if $s(u)ne s(v)$ in $mathbb{z}_k$ for all pa...

Journal: :transactions on combinatorics 2013
n. paramaguru r. sampathkumar

a modular $k$-coloring, $kge 2,$ of a graph $g$ without isolated vertices is a coloring of the vertices of $g$ with the elements in $mathbb{z}_k$ having the property that for every two adjacent vertices of $g,$ the sums of the colors of the neighbors are different in $mathbb{z}_k.$ the minimum $k$ for which $g$ has a modular $k-$coloring is the modular chromatic number of $g.$ except for some s...

Journal: :Journal of Combinatorial Theory, Series B 2018

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

Journal: :iranian journal of mathematical chemistry 2014
m. ghorbani m. songhori

the chromatic number of a graph g, denoted by χ(g), is the minimum number of colors such that g can be colored with these colors in such a way that no two adjacent vertices have the same color. a clique in a graph is a set of mutually adjacent vertices. the maximum size of a clique in a graph g is called the clique number of g. the turán graph tn(k) is a complete k-partite graph whose partition...

Journal: :Discrete Mathematics 2004

Journal: :Journal of Combinatorial Theory, Series A 2021

In this article we show how to compute the chromatic quasisymmetric function of indifference graphs from modular law introduced in [19]. We provide an algorithm which works for any that satisfies law, such as unicellular LLT polynomials. When graph has bipartite complement it reduces a planar network, case, prove coefficients elementary basis are positive unimodal polynomials and characterize t...

Journal: :Electr. J. Comb. 2009
Pascal Berthomé Raul Cordovil David Forge Véronique Ventos Thomas Zaslavsky

A gain graph is a graph whose edges are labelled invertibly by gains from a group. Switching is a transformation of gain graphs that generalizes conjugation in a group. A weak chromatic function of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws are ana...

2007
Pascal Berthomé Raul Cordovil David Forge Véronique Ventos Thomas Zaslavsky

A gain graph is a graph whose edges are labelled invertibly by gains from a group. Switching is a transformation of gain graphs that generalizes conjugation in a group. A weak chromatic function of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws are ana...

Journal: :Discrete Mathematics 1997
Michael Plantholt Shailesh K. Tipnis

The maximum of the maximum degree and the 'odd set quotients' provides a well-known lower bound 4)(G) for the chromatic index of a multigraph G. Plantholt proved that if G is a multigraph of order at most 8, its chromatic index equals qS(G) and that if G is a multigraph of order 10, the chromatic index of G cannot exceed qS(G) + 1. We identify those multigraphs G of order 9 and 10 whose chromat...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید