نتایج جستجو برای: merrifield
تعداد نتایج: 202 فیلتر نتایج به سال:
The Merrifield-Simmons index of a graph G is defined as the total number of its independent sets. A (n, n + 2)-graph is a connected simple graph with n vertices and n + 2 edges. In this paper we characterize the (n, n+2)-graph with the largest MerrifieldSimmons index. We show that its Merrifield-Simmons index i.e. the upper bound of the Merrifield-Simmons index of the (n, n+2)-graphs is 9× 2n−5...
The Hosoya index of a graph is defined as the total number of the matchings, including the empty edge set, of the graph. The Merrifield-Simmons index of a graph is defined as the total number of the independent vertex sets, including the empty vertex set, of the graph. Let U(n,∆) be the set of connected unicyclic graphs of order n with maximum degree ∆. We consider the Hosoya indices and the Me...
It is well known that the graph invariant, ‘the Merrifield–Simmons index’ is important one in structural chemistry. The connected acyclic graphs with maximal and minimal Merrifield–Simmons indices are determined by Prodinger and Tichy [H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16–21]. The sharp upper and lower bounds for theMerrifield–Simmons indices of u...
The Merrifield-Simmons index is related to several physicochemical characteristics and is thus of use in combinatorial chemistry, e.g. in drug design and molecular recognitions. In this paper, we show how one can algorithmically construct databases of acyclic molecular graphs with large Merrifield-Simmons index. Our algorithm can deal with a large number of atoms (several hundreds) in short tim...
the hosoya index and the merrifield-simmons index are two types of graph invariants used in mathematical chemistry. in this paper, we give some formulas for computed these indices for some classes of corona product and link of two graphs. furthermore, we obtain exact formulas of hosoya and merrifield-simmons indices for the set of bicyclic graphs, caterpillars and dual star.
For any graph G, let m(G) and i(G) be the numbers of matchings (i.e., the Hosoya index) and the number of independent sets (i.e., the Merrifield–Simmons index) of G, respectively. In this paper, we show that the linear hexagonal spider and zig-zag hexagonal spider attain the extremal values of Hosoya index and Merrifield–Simmons index, respectively. c © 2008 Elsevier B.V. All rights reserved.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید