نتایج جستجو برای: maximally edge
تعداد نتایج: 124122 فیلتر نتایج به سال:
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
sufficient conditions on the zeroth-order general randic index for maximally edge-connected digraphs
let $d$ be a digraph with vertex set $v(d)$. for vertex $vin v(d)$, the degree of $v$,denoted by $d(v)$, is defined as the minimum value if its out-degree and its in-degree.now let $d$ be a digraph with minimum degree $deltage 1$ and edge-connectivity$lambda$. if $alpha$ is real number, then the zeroth-order general randic index is definedby $sum_{xin v(d)}(d(x))^{alpha}$. a digraph is maximall...
Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs
Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree and its in-degree . Now let D be a digraph with minimum degree and edge-connectivity If is real number, then the zeroth-order general Randic index is defined by . A digraph is maximally edge-connected if . In this paper we present sufficient condi...
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
In this paper we present some new sufficient conditions for equality of edge-connectivity and minimum degree of graphs and digraphs as well as of bipartite graphs and digraphs.
Let G be a connected graph with minimum degree δ and edgeconnectivity λ. A graph is maximally edge-connected if λ = δ, and it is superedge-connected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. In this paper, we show that a connected graph or a connected triangle-free graph is maximally edge-connected or sup...
Let G = (V,E) be a multigraph (it has multiple edges, but no loops). We call G maximally edge-connected if λ(G) = δ(G), and G super edge-connected if every minimum edge-cut is a set of edges incident with some vertex. The restricted edgeconnectivity λ′(G) of G is the minimum number of edges whose removal disconnects G into non-trivial components. If λ′(G) achieves the upper bound of restricted ...
A simple graph $G$ with edge-connectivity $\lambda(G)$ and minimum degree $\delta(G)$ is maximally edge connected if $\lambda(G)=\delta(G)$. In 1964, given a non-increasing sequence $\pi=(d_{1},\ldots,d_{n})$, Jack Edmonds showed that there realization of $\pi$ $k$-edge-connected only $d_{n}\geq k$ $\sum_{i=1}^{n}d_{i}\geq 2(n-1)$ when $d_{n}=1$. We strengthen Edmonds's result by showing $G_{0}...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید